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Abstract
Background  DNA methylation is an epigenetic mechanism that takes place at gene promoters and a potent epigenetic marker 
to regulate gene expression.
Objective  The study aimed to improve the milk production of Zaraibi goats by addressing the methylation pattern of two 
milk production-related genes: the growth hormone receptor (GHR) and the growth differentiation factor-9 (GDF-9).
Methods  54 and 46 samples of low and high milk yield groups, respectively, were collected. Detection of methylation was 
assessed in two CpG islands in the GDF-9 promoter via methylation-specific primer assay (MSP) and in one CpG island 
across the GHR promoter using combined bisulfite restriction analysis (COBRA).
Results  A positive correlation between the methylation pattern of GDF-9 and GHR and their expression levels was reported. 
Breeding season was significantly effective on both peak milk yield (PMY) and total milk yield (TMY), where March 
reported a higher significant difference in PMY than November. Whereas single birth was highly significant on TMY than 
multiple births. The 3rd and 4th parities reported the highest significant difference in PMY, while the 4th parity was the 
most effective one on TMY.
Conclusion  These results may help improve the farm animals' milk productive efficiency and develop prospective epigenetic 
markers to improve milk yield by epigenetic marker-assisted selection (eMAS) in goat breeding programs.
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Introduction

Goats are a vital source of milk production, especially in 
the desert and rural areas in the delta region (Abd-Allah 
et al. 2019). There are two main local Egyptian goat breeds, 
raised in the Delta namely; Baladi and Zaraibi (Galal 
2005, Galal and Scienoes 2010). Zaraibi Goat (or Egyptian 

Nubian) is the most local goat in Egypt, especially Northern 
Delta, due to its efficiency in producing meat and milk at 
low cost (Capote et al. 2016, Moawed and Shalaby 2018). 
Most dairy products are of high nutritional importance and 
are processed from ruminant milk (cow, buffalo, and goat) 
that contains specific bioactive proteins, lipids, saccharides, 
immunoglobulins, and many other vital components (Kholif 
et al. 2020). The average milk production of the Zaraibi goat 
is 253.1 kg in the milking season including 90 days of lacta-
tion (Soltan, et al. 2021).

Zaraibi goat is the most promising goat among Egyptian 
breeds that has a high genetic potential for milk production 
(Galal 2005). Several candidate genes have been revealed 
through previous genome-wide association studies (GWAS) 
regarding milk production traits in dairy goats. Growth hor-
mone receptor (GHR) was strongly suggested as a functional 
gene for milk quality traits (Sanchez et al. 2016). GHR gene 
mediates most functions of growth hormone (GH) such as 
mammary gland growth, lactation, and fertility (Lucy 2008). 
Several studies reported a clear association between GHR 
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polymorphisms and milk production, quality, and coagula-
tion properties (Rahmatalla et al. 2011; Waters et al. 2011; 
Sanchez et al. 2016; Viale et al. 2017; El-Komy et al. 2020). 
GDF-9 is another candidate gene that performs a crucial 
function in the reproduction process through the develop-
ment and differentiation of ovarian follicles (Tang et al. 
2018). It has many polymorphisms that are associated with 
milk production, milk content, prolificacy, litter size, female 
fertility, and ovulation (Gorlov, et  al. 2018; Al-Khuzai 
and Ahmed 2019; Koyun et al. 2021; Wang et al. 2021). 
Moreover, several environmental factors could affect milk 
production efficiency. Many authors reported a significant 
influence of parity on peak and total milk yield (Agnihotri 
and Rajkumar 2007; Pawar et al. 2012; Shaat 2014). In addi-
tion, milk production at all phases of lactation are directly 
affected by litter size, parity number and kidding in dairy 
goats (Zamuner et al. 2020). Factors like kidding numbers, 
and kidding season demonstrate their significant effects on 
milk yield (Maldonado et al. 2018). Accordingly, many 
environmental variables can alter the expression of several 
genes and result in phenotypic differences without altering 
the nucleotide sequence of their DNA. These modifica-
tions are known as epigenetic changes. These changes may 
involve amino acid modifications of histone protein where 
DNA is wrapped, non-coding RNA expression, changes in 
DNA methylation status, and RNA methylation (Skinner 
et al. 2010; Mongan et al. 2019). The addition of methyl 
group to the C5 position of the cytosine ring is called DNA 
methylation, where cytosine should come before guanine 
to produce 5-methyl cytosine (5-mc) in the clusters of CpG 
dinucleotides in the promoter of the gene. CpGs are uncom-
mon in the genome; they are short DNA segments ranging 
in length from 300 to 3000 base pairs, that’s why they are 
known as CpG islands. Methylation of promoter sequences 
prevents some transcription factors from binding to them, so 
it is considered a powerful epigenetic marker and regulator 
of gene expression (Cedar and Bergman 2012; Barazandeh 
et al. 2019). Epigenetic processes can alter gene expression 
in response to various environmental factors and provide a 
link between environmental variations and animal physiol-
ogy (Donkin and Barrès 2018). Recently, the role of epige-
netic factors as an additional tool for the genetic regulation 
of livestock animal traits, management, and productivity has 
been addressed (Ibeagha and Yu 2021). Several techniques 
and analyses could discuss the relationship between meth-
ylation and gene expression and their association with milk 
production such as genome-wide DNA methylation, Func-
tion enrichment analysis, and methylation-sensitive Single 
Nucleotide Primer Extension (Ms-SNuPE) (Kurdyukov et al. 
2014 and Wanting et al. 2020). A considerable number of 
reports have estimated the methylation status of many candi-
date genes for their correlation with milk production in dif-
ferent livestock (Pauwels et al. 2017; Chen et al. 2018; Zhao 

et al. 2019). However, little is known about DNA methyla-
tion patterns and the expression of milk production genes in 
goats. The present study aimed to explore the effect of DNA 
methylation in the promoter region of two milk production-
related genes (GDF-9, GHR) on the milk production of the 
Zaraibi goat breed as an epigenetic marker to improve the 
productive efficiency of farm animals and investigate poten-
tial epigenetic markers to improve milk yield.

Materials and methods

Chemicals

All used molecular kits and chemicals were of analytical 
quality, purchased from Qiagen, Thermo-Scientific, Zymo-
Research, and Willow-fort Research Services Co. Cairo, 
Egypt. All reagents were utilized by the required safety and 
health protocols.

Animals and ethical considerations

Handling and protection of animals used in the study were 
done according to the recommendations of European Union 
directive 86/609/EEC (Louhimies 2002) and approved by the 
Animal Production Research Institute (APRI), Agriculture 
Research Center (ARC), Ministry of Agriculture and Land 
Reclamation (MALR) with permit number: CUIS8117. The 
does were maintained under similar management practices 
and were fed 25% concentrate-fed mixture (CFM), 75% fresh 
berseem throughout winter, and 50% CFM and 50% berseem 
in summer (NRC 2007). On El-Serw farm, (APRI) 100 adult 
female Zaraibi dairy goats were used, and milk samples were 
collected from each doe. The average body weight of the 
does was 31.5 kg, and the parity (kidding season of doe) 
was in the third, fourth, and fifth parities. Their ages ranged 
from 4 to 7 years. The litter size was recorded by the number 
of kids born for each doe (single or multiple births). Their 
breeding seasons were in November and March. Does were 
divided into low and high-producing animals.

Genomic DNA extraction and bisulfite treatment

Somatic cells of low and high milk yield groups were col-
lected from 50 mL of milk samples from each goat for 
genomic DNA extraction using the QIAmp DNA Mini Kit 
(Qiagen, GmbH, Germany). The concentrations of DNA 
were measured. 1000 ng of genomic DNA was converted 
by sodium bisulfate (from cytosine to uracil) using a ZYMO 
RESEARCH-EZ DNA Methylation-Gold Kit, following 
the manufacturer’s instructions. Briefly, 130 µL of conver-
sion reagents were added to 20 µL of DNA and incubated 
at 64 °C for 2.5 h in Zymo-Spin TM IC Column. 600 µL 
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M-binding buffer was added to the Zymo-Spin TM IC Col-
umn and centrifuged, then 100 µL of M-wash buffer was 
added followed by 200 µL of M-Desulphonation buffer, and 
finally,15 µL of M-elution buffer to elute the methylated 
DNA. The output was tested by two-direction sequencing 
to confirm the successfulness of the conversion process.

Prediction of the CpG island and methylation primer 
design

A free online tool MethPrimer https://​www.​uroge​ne.​org/​
methp​rimer/ was used to identify CpG islands within the 
promoters of GHR and GDF-9 genes and to design prim-
ers used to amplify these CpGs specific regions (Li and 
Dahiya 2002). Two CpGs islands in the promoter region 
(840 bp) of the GDF-9 gene were found. Island 1 at region 
(49 – 309 bp), and Island 2; at region (512 – 615 bp) which 
was amplified using methylation-specific primers. Regard-
ing the GHR gene promoter (660 bp), there was one CpGs 
Island found at region (295 – 407 bp) which was amplified 
using restriction sites primers used for COBRA analysis as 
shown in Table 1.

PCR amplification of bisulfite‑treated DNA

The CpG regions within the GHR and GDF-9 genes were 
amplified using COSMO PCR red master mix kit. The reac-
tion contained about 12.5 µL of 2 × Cosmo PCR master mix, 
1.5 µL (10 pmol) from each primer, and 2.5 µL converted 
DNA, then nuclease-free water up to 25 µL to reach the 
total reaction volume. The thermal-cycler program was as 
follows: Initial denaturation at 95 °C for 2 min, 32 cycles 
of denaturation step at 95 °C for 15 s. then annealing at 
60.3 °C, 58.8 °C, and 48 °C for methylated GDF-9, unmeth-
ylated GDF-9, and restriction primer of GHR, respectively 
for 30 s., then extension at 72 °C for 1 min, and finally, the 
final extension step at 72 °C for 5 min. The methylation pat-
tern was detected after electrophoresing the PCR products 
in 2.5% agarose and reporting the presence or absence of 
bands for each primer. Successful PCR products for each 
CpG region were 114 bp, and 118 bp for methylated and 

unmethylated patterns of GDF-9, respectively while the PCR 
product of GHR was 214 bp.

Combined bisulfite restriction analysis (COBRA)

Bsh1236I restriction enzyme was used to digest the ampli-
fied region of the GHR gene (214 bp) using the Thermo 
Scientific, Fast-Digest Kit. The total reaction volume was 
15 µL containing 1 µL of the (Bsh1236I) enzyme, 1 µL of 
fast digest green buffer, 5 µl PCR products, and 8 µL water 
nuclease-free. The mixture was mixed well and incubated 
for 5 min at 37 °C, then loaded onto 6% polyacrylamide gel 
electrophoresis to detect the digested bands (124 bp, 63 bp, 
and 27 bp).

RNA extraction and reverse transcriptase‑PCR

Total RNA was extracted by the RNA isolation kit (Qiagen, 
GmbH, Germany) according to the manufacturer’s protocol. 
Then, RT-PCR was carried out using the RT-PCR Kit (Qia-
gen, GmbH, Germany), where 5 μg ~ 11μL of total RNA was 
used. The PCR profile started with incubating the reaction 
mixture at 65 °C for 5 min followed by a second incubation 
after adding 4 μL of 5 × reaction buffer, 1 μL of Ribo-Lock 
RNase inhibitor (U/μL), 2 μL of 10 mM dNTP mix, and 1 
μL of Revert-Aid M-MulV RT (200 U/μL) up to 20 µL as a 
total reaction volume at 42 °C for 60 min, and inactivation 
at 70 °C for 5 min.

Quantitative real‑time PCR (qRT‑PCR)

The generated cDNA has been subjected to Real-Time PCR 
using primer sets for GHR, GDF-9 genes, and RPLSP0 as 
a housekeeping gene (Table 2), according to Thermo Sci-
entific-Maxima SYBR green qPCR master mix (2x), using 
ROTOR-GENE machine, (Qiagen GmbH, Germany). The 
total reaction volume was 25 µL containing 12.5 µL of 
SYBR green master mix (2x), 1.5 µL (10 pmol) from each 
primer, 2.5µL from cDNA and nuclease-free water up to 
25 µl. The thermal-cycler program started with an initial 

Table 1   Primer sets for detection of gene methylation pattern

MSP of the GDF-9 Gene
 Left M: 5′- GAG​GTC​GTC​GTT​TGG​TAG​TTAAC -3′
 Right M: 5′- GTA​TCC​CTA​ATT​CCG​ATC​TTA​CGA​T -3′
 Left U: 5′- TTG​AGG​TTG​TTG​TTT​GGT​AGT​TAA​T-3′
 Right U: 5′- CCA​TAT​CCC​TAA​TTC​CAA​TCT​TAC​A-3′

Restriction Primers of the GHR Gene
 Left: 5′- ATG​GAA​ATA​ATT​TAT​GTT​TGA​TTG​T-3′
 Right: 5′- AAA​ATA​ACA​ACC​CAC​TCC​AAT​ATT​CT-3′

Table 2   Real-time primer sets

QRT-PCR Primers of the GDF-9 Gene
 Forward: 5′- GAC​GCC​ACC​TCT​ACA​ACA​CT-3′
 Reverse: 5′- ACG​ATC​CAG​GTT​AAA​CAG​CAGA-3′

QRT-PCR Primers of the GHR Gene
 Forward: 5′- CAT​AGT​GCG​GTC​TGC​TTC​CA-3′
 Reverse: 5′- GTG​TGG​CTT​CAC​TCC​CAG​AA-3′

Ribosomal Protein Large Subunit P0 Reference (RPLSP0) Gene For 
QRT PCR

 Forward: 5′- CAA​CCC​CGA​AGT​GCT​TGA​CAT-3′
 Reverse: 5′- ACG​CAG​ATG​GAT​CAG​CCA​-3′

https://www.urogene.org/methprimer/
https://www.urogene.org/methprimer/
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denaturation at 95 °C for 15 min. and 40 cycles of 95 °C 
for 15 s. for denaturation, 60 °C for 30 s. for annealing, and 
72 °C for 30 s. for extension, and final extension at 72 °C for 
5 min. For reproducible results, the PCR reaction for each 
gene was assessed in triplicates. The target mRNA amount 
was determined and normalized relative to the amount of 
Ribosomal Protein Large Subunit P0 (RPLSP0) mRNA. For 
calculating fold change expression relative to the reference 
gene (RPLSP0), the formula (2 − ΔΔCt) was estimated.

Statistical analysis

Analysis of variance was reach tested by the general linear 
model (GLM) procedure of the statistical analysis system 
(SAS 2004) was used to test the effect of the studied fixed 
factors (season, level of production, litter size, parity, GDF-9 
/Methylation (MSP), and GHR/Restriction enzyme) on the 
peak milk yield and total milk yield traits and the assumed 
models were:

where,
Yijklmnn is the observed records of peak milk yield of the 

nth doe (after 14 days of birth) and the total milk yield of the 
nth doe (per season);

µ is the overall population means;
Si is the fixed effect of ith season of birth, i = 1: (Novem-

ber) and i = 2: (March);
Pj is the fixed effect of jth production levels, j = 1: (High) 

j =2: (Low);
Lk is the fixed effect of kth litter size of doe, k = 1: (Sin-

gle) k = 2: (multiple birth);
Tl is the fixed effect of lth parity of does, l = 3 to 5;
Mm is the fixed effect of mth methylation of GDF-9 gene, 

m = 1: (methylated), m = 2: (unmethylated), and m = 3: 
(hemimethylated);

Rn is the fixed effect of nth methylation of GHR, n = 
1: (unmethylated, not digested), n = 2: (hemimethylated, 
digested to two bands), and n = 3: (methylated, digested to 
three bands);

eijklmnn is the random residual associated with the individual, 
assumed to be independent and normally distributed with 
(0, �2

e
).

where,
Yimnn is the observed records of the nth doe of gene 

expression of GDF-9 and GHR genes;
µ is the overall population means;

(5)Yijklmnn=� + Si + Pj + Lk + Tl + Mm + Rn + eijklmnn

Yimnn = � + Si + Mm + Rn + eimnn

Si is the fixed effect of ith season of birth, i = 1: (Novem-
ber) and i = 2: (March);

Mm is the fixed effect of mth methylation of GDF-9 gene, 
m = 1: (methylated), m = 2: (unmethylated), and m = 3: 
(hemimethylated);

Rn is the fixed effect of nth methylation of GHR, n = 1: 
(unmethylated, not digested), n = 2: (hemimethylated, 
digested to two bands), and n = 3: (methylated, digested to 
three bands);

eimnn is the random error.

The effect of PMY on TMY and simple regression models 
were:

where,
µ is the overall population means;
Xq is the fixed effect of qth peak milk yield, q = 1: (6 ≤ 

30 kg), 2: (30 ≤ 40 kg), 3: (40 ≤ 50 kg) and 4: (> 50 kg);
eqn is the random error.

where,
Y is the total milk yield of the nth doe (per season);
a is the Intercept, and it is the value when x = 0;
Bx b is the co-efficient of regression, and x is the fixed 

effect of peak milk yield (after 14 days of birth);
e is the random error and it is assumed to be independent 

and normally distributed with (0, �2
e
).

Results

Differences between high and low milk production 
on PMY and TMY

Milk samples were collected from one hundred mature 
female Zaraibi dairy goats divided into two groups: the high 
milk yield group which produces more than 202.17 kg milk 
per season (about 46 does) and the low milk yield group 
which produces less than 202 kg milk per season (about 54 
does) according to total milk yield. Differences between high 
and low milk production were highly significant (P ≤ 0.001) 
in both the peak milk yield and total milk yield (Table 3).

Effect of peak milk yield on TMY

The effect of PMY through 14:21 days on TMY (/season) 
was highly significant between the 1, 2, 3, and 4 categories 

�� = � + �� + ���

� = � + �� + � (Simple Linear Regression)
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based on the milk yield/kg, and means (M) ± standard 
error (SE) (167.1b ± 12.1, 191.7b ± 8.4, 244.7a ± 13.7, and 

234.5a ± 14.2, respectively), but non-significant between 
categories 1 and 2, and between categories 3 and 4 (Fig. 1).

The regression correlation between PMY on TMY 
was highly significant (P ≤ 0.0001), showing a positive 
effect, when PMY increased by 1 kg, the TMY would be 
increased by 1.45 kg (Table 4).

Results were expressed as simple linear regression when 
Y (TMY) = 146.12 + 1.45x.

Sequencing analysis of bisulfite‑converted DNA

Conversion of genomic DNA was proven by sequenc-
ing analysis of part of the genomic DNA from nucleotide 
number “192” to nucleotide number “281” in the promoter 
sequence of GDF-9 gene where each unmethylated "Cyto-
sine" nucleotide converted to “Thymine” (Fig. 2).

Prediction of the CpG island and methylation primer 
design

A free online tool Meth-Primer https://​www.​uroge​ne.​org/​
methp​rimer/ was used to identify CpG islands within the 
promoters of GHR and GDF-9 genes and to design primers 
used to amplify these CpGs specific regions (Li and Dahiya 
2002).The sequence length of GDF-9 was 840 bp where two 
CpGs islands in the promoter region of the GDF-9 gene were 
found, island (1) size was 261 bp (from 49 to 309 bp), island 
(2) size was 104 bp (from 512 to 615 bp) (Fig. 3). Otherwise, 
GHR gene had a 660 bp of sequence length and one CpG 
island in the promoter region was found, the size island (1) 
was 113 bp (from 295 to 407 bp) (Fig. 4).

DNA methylation pattern of the GDF‑9 gene 
promoter using MSP analysis

The methylated samples showed a successful PCR product 
of CpG1 at 114 bp, while for the un-methylated samples; a 
sharp band at 118 bp was reported. Some samples revealed 
two bands in the same samples (PCR of methylated and 
unmethylated pattern) that were called hemimethylated sam-
ples, as indicated in Fig. 5. While CpG 2 region showed no 
PCR products after using two different sets of methylated 
and unmethylated primers (set 2 and set 3 Fig. 3).

Table 3   Differences between high and low milk production on PMY 
and TMY

*mean (M) ± standard error (SE); a, b, c = significantly different 
at P < 0.05; peak milk yield (PMY), total milk yield (TMY) and N: 
number of records

Factors Category N PMY(kg) TMY(kg)
M ± SE M ± SE

Milk Production-level High 46 46.0a ± 2.43 259.5a ± 9.6
Overall mean Low 54 32.4b ± 3.00 153.3b ± 9.4

100 38.63 ± 1.08 202.17 ± 3.25

Fig. 1   Effect of peak milk yield (PMY) through 14:21  days on 
total milk yield (TMY) (/season); a, b, c = is significantly differ-
ent at P < 0.05, PMY categories (based on the milk yield/kg.) = 1: 
(6 ≤ 30 kg), 2: (30 ≤ 40 kg), 3: (40 ≤ 50 kg) and 4: (> 50 kg).* = sig-
nificance P ≤ 0.05, P ≤ 0.01, ** = significance P ≤ 0.03, *** = highly 
significant, non-significant P > 0.05 (no*)

Table 4   Regression correlation between peak milk yield and total 
milk yield

Variable D.F Parameter estimate Pr >|t|

Intercept 1 146.12  < 0.0001
PMY 1 1.45 kg 0.0005

Fig. 2   Alignment of the genomic DNA of Zaraibi goat and its converted DNA showing the conversion of each unmethylated nucleotide “C” to 
nucleotide "T"

https://www.urogene.org/methprimer/
https://www.urogene.org/methprimer/
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Percentage of methylation levels of the GDF‑9 gene 
in high and low milk production Zaraibi Goat

From 54 samples of low milk production samples, there 
were 74% methylated, 11% unmethylated, and 15%, 

hemimethylated samples. On the other hand, the per-
centages of unmethylated, methylated, and hemimethyl-
ated samples in the total number of high milk production 
samples were 52%, 13%, and 35%, respectively out of 46 
samples (Fig. 6).

Fig. 3   The promoter region of 
the GDF-9 gene shows the two 
detected CpG islands

Fig. 4   The promoter region 
of the GHR gene shows one 
detected CpG islands

Fig. 5   PCR products of MSP for the GDF-9 gene, lane 1: DNA lad-
ders at 100 bp. M: methylated PCR products at 114 bp. U: Unmethyl-
ated products at 118 bp for samples 1–7. (1 M and 1U): hemimeth-

ylated sample showing methylated and unmethylated PCR products 
at114 bp and 118 bp, respectively
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DNA methylation pattern of GHR gene promoter 
using COBRA analysis

The digestion of the GHR amplicon (214 bp) using the 
enzyme (Bsh126I) showed three bands at 124 bp, 63 bp, and 
27 bp at complete digestion (Methylated samples), and only 
two bands at 124 bp, 63 bp for hemimethylated samples, and 
a sharp band at 214 bp when the amplicon was not digested 
(Unmethylated samples) (Fig. 7).

Percentage of methylation levels of GHR gene 
in high and low milk production

Approximately 81.5%, 13% and 5.5% of 54 samples of low 
milk production samples were hemimethylated samples 
(digested into two bands), methylated samples (digested 
into three bands), and unmethylated samples, respectively. 
While in 46 high milk production samples, there were 85% 
unmethylated samples, 8.5% hemimethylated samples and 
6.5% methylated samples (Fig. 8).

mRNA expression levels of GDF‑9 and GHR genes

Quantitative real-time PCR was used to analyze the mRNA 
levels of GDF-9 and GHR gene expression in high and 
low milk production groups. The expression levels of both 
GDF-9 and GHR genes in high milk yield samples were 
significantly (P < 0.05) higher than the expression level of 
low milk yield samples (Fig. 9).

Relationship between methylation patterns 
and expression level of GDF‑9 and GHR genes

mRNA expression of the GHR and GDF-9 genes showed 
a significant effect (P < 0.05) between methylated and 
unmethylated samples (Fig. 10).

Fig. 6   Percentage of methyla-
tion levels of the GDF-9 gene 
within high and low milk 
production

Fig. 7   Bands of GHR PCR products after digestion with restriction 
enzyme (Bsh1236I). Lane 1: DNA ladders at 50  bp, lane 2: undi-
gested sample. Lanes (s1, s11): methylated samples digested to three 
bands 124 bp, 63 bp, and 27 bp. Lanes (s2, s3,s4, s6, s10, s13): hemi-

methylated samples digested to two bands 124 bp and 63 bp. Lanes 
(s5, s7, s8, s9, s12): unmethylated samples showed only one band at 
214 bp



	 Genes & Genomics

1 3

Fig. 8   Percentage of GHR gene 
methylation levels within high 
and low milk production

Fig. 9   Relative mRNA expres-
sion of GHR and GDF-9 genes 
in milk production groups. Data 
expressed relative to the house-
keeping gene RPLSP0. The 
data represent the mean ± SE, 
(n = 100). * = indicated the sig-
nificant difference (P < 0.05)

Fig. 10   The effect of methylation patterns of GHR and GDF-9 genes on their relative mRNA expressions. The data represent the mean ± SE, 
(n = 100). * = indicated the significant difference (P < 0.05)
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Relationship between breeding season 
and the expression levels of GDF‑9 and GHR genes

Breeding season showed a non-significant effect (P > 0.05) 
in (March and November) on the expression of both genes 
(GDF-9 and GHR) (Fig. 11).

Effect of methylation levels of GDF‑9 and GHR genes 
on PMY & TMY

The effect of the methylation level of GDF-9 and GHR 
genes on both peak milk yield (PMY) and total milk 
yield (TMY) were highly significant (P < 0.05) in 
unmethylated, methylated, and hemimethylated patterns 
(48.0a ± 2.3, 30.2b ± 2.0, and 43.0a ± 2.6 kg, respectively) 
on PMY, while they were (230.0a ± 7.6, 170.5b ± 6.5, and 
228.3a ± 7.7 kg, respectively) on TMY of the GDF-9 gene. 
Among the three categories, there was a highly significant 
difference (P < 0.05) between methylated and unmethyl-
ated patterns and between methylated and hemimethyl-
ated patterns on PMY and TMY, but there is no discern-
ible difference among unmethylated and hemimethylated 
levels on PMY and TMY. Regarding the methylation 
pattern of GHR gene, there was a highly significant dif-
ference (P < 0.05) between unmethylated pattern, hemi-
methylated pattern, and methylated pattern (47.8a ± 2.4, 
33.0b ± 2.4, and 26.3c ± 3.6 kg, respectively) on PMY and 
(252.7a ± 7.4, 195.9b ± 11.0 and 159.2c ± 7.3 kg, respec-
tively) on TMY. Moreover, there was a hugely significant 
difference (P < 0.05) in the methylated pattern more than 
both unmethylated and hemimethylated patterns of GDF-9 
on PMY and TMY, whereas, the three patterns of GHR 
showed a remarkably significant difference (P < 0.05) 
between them on PMY and TMY (Table 5).

Effect of some environmental factors (breeding 
season, litter size, and parity) on peak milk yield 
(PMY) and total milk yield (TMY)

Breeding season showed a higher significant difference 
(P < 0.05) in the March season than November one on PMY 
(42.5a ± 1.7 and 32.7b ± 2.2, respectively), meanwhile, 
there wasn’t a significant difference between both seasons 
on TMY. On the other hand, single litter size was highly 
significant (P < 0.05) on TMY than PMY (229.5a ± 6.1 and 
187.4b ± 5.8, respectively), while litter size showed no signif-
icant difference between them on PMY. Regarding the parity 
(kidding season), there were highly significant differences 
(P < 0.05) between the 3rd, 4th, and 5th parities on TMY 
(204.5b ± 8.3, 260.2a ± 8.1, and 157.4c ± 8.0, respectively), 
while PMY at 3rd and 4th parities weren’t significantly dif-
ferent, but there was a discernible difference among 3rd 
and 4th comparable to the 5th (41.3a ± 2.8, 41.9a ± 2.7 and 
34.7b ± 2.7, respectively). Taken together, the 3rd and 4th 
parities reported the highest significant difference (P < 0.05) 
in PMY, while the 4th parity was the most effective one on 

Fig. 11   Effect of breeding season on the expression of GHR and GDF-9 genes. The data represent the mean ± SE, (n = 100)

Table 5   Effect of methylation of GDF-9 and GHR genes on PMY 
and TMY

*mean (M) ± standard error (SE); a, b, c = different letters are signifi-
cantly different at P < 0.05; peak milk yield (PMY), total milk yield 
(TMY) and N: number of records

Factors Methylation pat-
terns

N PMY(kg) TMY(kg)
M ± SE M ± SE

Methylation-
GDF-9

Unmethylated 30 48.0a ± 2.3 230.0a ± 7.6
Methylated 46 30.2b ± 2.0 170.5b ± 6.5
Hemimethylated 24 43.0a ± 2.6 228.0a ± 7.7

Methylation-
GHR

Unmethylated 42 47.8a ± 2.4 252.7a ± 7.4
Methylated 10 26.3c ± 3.6 159.2c ± 7.3
Hemimethylated 48 33.0b ± 2.4 195.9b ± 11.0
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TMY (Table 6). Collectively, all the tested factors were sig-
nificantly effective on PMY and TMY, where the 4th parity 
showed the highest effect on TMY.

Discussion

DNA methylation is considered a regulatory tool for mam-
mary gland development (Chen et al. 2019). A recent study 
has reported a potential association between DNA meth-
ylation and milk production (Wang et al. 2021). GHR and 
GDF-9 genes play a crucial role during lactation. GHR gene 
and its polymorphisms have a vital role in the development 
of the mammary gland and milk production (El-Komy et al. 
2020; Nanaei et al. 2020; Cobanoglu et al. 2021; Erdoğan 
et al. 2021). Several studies indicated that GDF-9 increases 
ovarian follicles growth, and ovulation rate, and its polymor-
phisms had a significant correlation with litter size, number 
of lambs, twining %, and thus milk production (Al-Khuzai 
and Ahmed 2019; Koyun, et al. 2021). Therefore, it is mean-
ingful to study the methylation status of these genes and their 
association with milk production performance. The present 
data revealed that DNA methylation patterns of the GDF-9 
and GHR have high significant differences (P < 0.05) in PMY 
and TMY, in high and low milk production groups. There 
was a positive correlation between the quantitative mRNA 
expression of GDF-9 and GHR with milk production, and 
a negative correlation between their methylation percentage 
and milk production, where high methylation states of GDF-9 
and GHR genes were associated with the reduction of milk 
production in Zaraibi goat. This may be because when CpG 
islands in the promoter regions are methylated abnormally, 
remodeling of chromatin conformation takes place and gene 
transcription is suppressed (Cedar and Bergman 2009, Li and 
Zhang 2014). This is similar to the results of (Wang et al. 
2019a, b) who reported that high milk yield of dairy cows 
was associated with low methylation percentage, while those 

of low milk yield have higher methylation percentage. Also 
this may contribute to the down-regulation of DNMT3A 
and 3B in high milk yield animals, and miR-29 s in the low 
milk yield group as revealed by (Bian et al. 2015) in dairy 
cows, where miR-29 s inhibits the expression of De novo 
methyltransferase enzymes DNMT3A and 3B,which indi-
cates the role of DNA methylation as a regulatory mechanism 
of mammary function. Some recent studies showed that the 
production of milk in cows is a complicated feature that is 
influenced by several biological and environmental variables. 
According to Wang et al. (2019), in high-milk yield cows, 
DNA methylation rates were found to be lower. Xuan Liu 
et al. (2017), discovered that DNA methylation of EEF1D 
gene may have a significant impact on milk production traits 
in dairy cattle and likely plays a significant role in its tran-
scriptional regulation. Wanting et al. (2020), compared the 
transcriptional profiles and genome-wide DNA methylation 
patterns of cows with highly diverse milk production perfor-
mances using genome-wide DNA methylation sequencing 
and RNA-seq on blood tissue, and revealed that blood tissue 
alterations in DNA methylation and gene expression for the 
DOCK1, PTK2, and PIK3R1 genes had variations in milk 
production among cattle. In addition, the quantity of methio-
nine, lysine, choline, and folate in the diet, among other die-
tary elements that impact milk supply and composition, has 
been shown by Ana Lesta et al. (2023) to change the methyla-
tion status of certain genes in dairy cows. According to Jiang 
et al. (2014), the EEFID gene and the ribosome 60S were 
both shown to be highly expressed in the mammary tissue 
during the milking stage in cows. According to Xiaoyun et al. 
(2023), photoperiod may cause the DNA of the MTNR1A 
gene to be methylated to regulate the gene's expression. The 
levels of DNA methylation and gene expression in ewes had 
a substantial negative connection (P < 0.001) that changed 
how reproductive hormones were secreted and influenced the 
sheep's seasonal reproductive activity. However, the present 
study was not designed to measure the expressions of such 
genes. We can indicate that DNA methylation plays a signifi-
cant role in milk production as stated by (Singh et al. 2010; 
Hwang et al. 2017).

The effects of non-genetic factors on PMY and TMY 
were remarkably significant within the high and low milk 
yield groups. Breeding season was profoundly significant 
(P ≤ 0.001) on both, PMY and TMY, there were no signifi-
cant differences between March and November seasons on 
TMY, while the March season showed a higher significant 
difference on PMY than November. This agrees with (Akpa 
et al. 2001) who discovered that does with kidding during 
the wet season (November through February) had a lower 
PMY of (2.16) kg than those with kidding during the dry 
season (March through October) who had PMY of (2.34 kg). 
A similar study demonstrated that lower milk production has 
been reported in winter at the beginning of lactation, than 

Table 6   Effect of the breeding season, litter size, and parity on peak 
milk yield (PMY) and total milk yield (TMY)

*mean (M) ± standard error (SE); a, b, c = different letters are signifi-
cantly different at P < 0.05; peak milk yield (PMY), total milk yield 
(TMY), and N number of records

Factors Category N PMY(kg) TMY(kg)
M ± SE M ± SE

Breeding Season March 60 42.5a ± 1.7 205.1a ± 5.1
November 40 32.7b ± 2.2 197.7a ± 6.6

Litter Size Single 35 38.8a ± 2.0 229.5a ± 6.1
Multiple 65 38.5a ± 1.9 187.4b ± 5.8

Parity 3rd 23 41.3a ± 2.8 204.5b ± 8.3
4th 33 41.9a ± 2.7 260.2a ± 8.1
5th 44 34.7b ± 2.7 157.4c ± 8.0
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those kidding in the spring (León et al. 2012; Arnal et al. 
2018). That may be rationalized by the availability of food 
in terms of quality and quantity during dry seasons including 
crop residues and grazable materials which means there is 
no nutritional stress. The relationship between food qual-
ity and milk production has been reported by (McCarthy 
et al. 2011; Hanrahan et al. 2018; Hennessy et al. 2020) who 
stated that one cow showed increasing in stocking rate per 
hectare resulted in increasing of milk production by 20% 
per hectare, which requires a reconsideration of grassland 
organization for pasture use to increase productivity on the 
farm. Moreover, March was reported as the lowest CMY and 
shortest lactation length in dairy goats in Australia due to the 
short photoperiod according to (Zamuner et al. 2020), that 
is the case during wet seasons in Egypt (November through 
February) where they show short photoperiod and thus milk 
production is reduced. Regarding the effect of litter size of 
does on PMY, it was non-significant (P ≥ 0.05) in both sin-
gle and multiple births, but highly significant on TMY in a 
single birth. These findings are similar to (Wahome et al. 
1994) who found that the litter size was not significant in 
an increase of peak milk yield and the decline after peak 
yield, but it was significant (P < 0.01) in total milk yield in 
dairy goats. In addition, (Akpa et al. 2001), reported a non-
significant effect on litter size for both PMY and TMY in 
Red Sokoto goats in single and twins birth. Considering that 
all the previous reports were taken from true ranges condi-
tions; these findings may be related to the weak conditions 
resulting from the stress of pregnancy and birth of twins or 
triplets. However, these observations were controversial with 
(Margatho et al. 2019; Zamuner et al. 2020) who reported 
that CMY was higher in animals delivering multiple kids 
than those delivering a single kid. The high proportion of 
alveoli along several lactation periods increases the udder 
volume and the secretory parenchyma, and thus increases the 
milk production in multiparous goats compared with primi-
parous goats. In this study, the effect of parity on milk pro-
ductivity varied as goats go through lactation, where Zaraibi 
had the lowest milk yield at the first parity, while 3rd, 4th, 
and 5th parities showed a highly significant effect (P ≤ 0.01) 
on PMY and TMY. These results are supported by several 
authors who stated that in many goat breeds (Zaraibi, Bal-
adi, Damascus, Angola-Nubian, and Angora), the maximum 
milk yield was achieved at 3rd, 4th and 5th parities (Teleb 
et al. 2009; Hamed 2010; Anwar et al. 2012). Conversely, a 
recent report stated that the fourth parity in goats showed the 
shortest lactation period, while the third parity was reported 
as the period of maximum milk production (Zamuner, et al. 
2020). Similarly, a peak with larger perseverance in first-
parity goats, and reduced perseverance with rising parity 
was observed by (León et al. 2012; Arnal et al. 2018). The 
present study showed that the mRNA expression of both 
genes (GDF-9 and GHR) was not significantly different 

throughout the breeding season (P > 0.05) in either of the 
two seasons (March or November). By comparing the effect 
of methylation patterns on the mRNA expression of genes 
(GDF-9 and GHR) it was revealed that there was significant 
e effect (P ≤ 0.05) between methylation, unmethylated and 
hemimethylated patterns and low, high and medium milk 
production which indicated that methylation changes had 
direct significant effects when compared with breeding sea-
son and their effects on milk production. These results agree 
with Sushil et al. (2020), who showed that there was no sig-
nificant effect of season on different productive performance 
traits in Sahiwal cattle. Although, Xuan Liu et al. (2017) 
revealed that the methylation changes in the dry period 
was less than at the early stage of lactation, and the mRNA 
expression of EEF1D was greater in the dry period than it 
was at the early stage of lactation. So, that could demonstrate 
the relationship between methylation patterns, gene expres-
sion and their association with milk production. Regression 
co-relational of PMY (14:21 day after birth) with TMY 
(240 days) was highly significant (P ≤ 0.001). It indicated 
a positive co-relational statistic, where an increase of PMY 
by 1 kg causes an increase of TMY by 1.45 kg. These results 
agree with (Abdelhamid et al. 2011) who estimated that a 
total milk yield of 363.15 kg in Zaraibi does for 240 days, 
tended to decrease during the suckling and lactation period 
in low yield does more than high yield animals.

This is the first study that gives additional information 
on how methylation pattern of GHR and GDF-9 may affect 
the milk production of commercial dairy goats, and also has 
produced new knowledge regarding the effects of different 
non-genetic factors on milk yield in Zaraibi goats.

Conclusion

The major finding of this study was that the methylation 
patterns of GDF-9 and GHR were markedly affecting the 
PMY and TMY in goats. In addition, many non-genetic fac-
tors significantly influence the productivity of milk in goats. 
Breeding season significantly affects milk production, where 
March had the greatest effect on PMY. Single birth does pro-
duce higher TMY than multiple ones. Additionally, Maxi-
mum milk production was attained in the third and fourth 
parity, that interactive effects should be considered when 
studying individual performance.
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