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The progressive increase in the resistance rates to first- and second-line

antibiotics has forced the reuse of colistin as last-line treatment for

Acinetobacter baumannii infections, but the emergence of colistin-resistant

strains is not uncommon. This has been long linked to acquired chromosomal

mutations in the operons pmrCAB and lpxACD. Hence, such mutations are

routinely screened in colistin-resistant strains by most studies. The current

study was designed to explore the possible existence of pmrCAB and lpxACD

mutations in colistin-susceptible isolates. For this purpose, the whole genome

sequences of eighteen multi-/extensively drug resistant A. baumannii were

generated by Illumina sequencing and screened for missense mutations of the

operons pmrCAB and lpxACD. Most of the isolates belonged to global clones

(GCs) including GC1 (n=2), GC2 (n=7), GC7 (n=2), GC9 (n=3), and GC11 (n=1).

The minimum inhibitory concentrations (MICs) of colistin were determined by

the broth microdilution assay. Seventeen isolates were fully susceptible to

colistin with MICs ranging from (≤0.125 to 0.5 µg/ml). Interestingly, all colistin-

susceptible isolates carried missense mutations in pmrCAB and lpxACD operons

with reference to A. baumannii ATCC 19606. Overall, 34 mutations were found.

Most substitutions were detected in pmrC (n=20) while nomutations were found

in pmrA or lpxA. Notably, the mutation pattern of the two operons was almost

conserved among the isolates that belonged to the same sequence type (ST) or

GC. This was also confirmed by expanding the analysis to include A. baumannii

genomes deposited in public databases. Here, we demonstrated the possible

existence of missense mutations in pmrCAB and lpxACD operons in colistin-

susceptible isolates, shedding light on the importance of interpreting mutations

with reference to colistin-susceptible isolates of the same ST/GC to avoid the

misleading impact of the ST/GC-related polymorphism. In turn, this may lead to

misinterpretation of mutations and, hence, overlooking the real players in colistin

resistance that are yet to be identified.
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1 Introduction

The continual occurrence of mutations in non-susceptible

pathogenic strains and the associated determinants of antimicrobial

resistance within hospitals, countries, and across the world are

currently the greatest threats to international Public Health

(Shelenkov et al., 2021). The wide use of antibiotics in

immunocompromised patients at intensive care units and the

absence of antibiotic stewardship programs in hospital settings

have led to the occurrence of pathogens that are multiple drug-

resistant (MDR) and the rise of extensively drug-resistant (XDR)

strains. Therefore, clinicians were forced to depend on colistin as the

last treatment option to combat these infections (Seleim et al., 2022).

A. baumannii, a particularly problematic pathogen poses a significant

threat to public health, by causing severe and invasive infections that

are associated with high mortality rates in immunocompromised

individuals and patients receiving intensive care. MDR and/or XDR

A. baumannii have been reported to cause a significant degree of

infections in Egypt during recent years (Ghaith et al., 2017; Al-

Hassan et al., 2019). However, the direness of the situation is often

masked in Egypt and other developing countries because of the lack

of surveillance systems that can be attributed to restricted financial

resources. Epidemiological surveillance is one significant tactic to

assess and combat the burden exerted by problematic MDR

pathogens in hospital settings. Overcoming antibiotic resistance is a

critical challenge in the treatment of Acinetobacter infections (Wong

et al., 2017), especially in view of the rise in carbapenem resistance

among this species. Carbapenem resistance is generally associated

with MDR and XDR phenotypes, which have been frequently

demonstrated in Acinetobacter (Infectious Diseases Society Of, A

2012). Due to this problematic carbapenem-resistant A. baumannii

(CRAB) clinical isolates, numerous Egyptian hospitals have

reintroduced polymyxin use for therapy. Polymyxins E or colistin,

the last therapeutic option for MDR Gram-negative pathogen

infections, is widely used for the treatment of CRAB infections

(Chamoun et al., 2021). Mechanistically, the interaction between

the cationic non-ribosomal lipopeptides of colistin, and the lipid A

component of lipopolysaccharide (LPS) in the outer membrane of the

cell envelope destabilizes the latter. This subsequently allows the

uptake of polymyxins into the periplasm and increases permeability

by disrupting both outer and inner membrane integrity (Moffatt et al.,

2019). Acquired colistin resistance develops primarily via drug target

alteration. Substitutions or mobile genetic element insertion or

deletion in the genes involved in the biosynthesis of lipid A, may

result in structural or functional modifications in the lipid A moiety

(Chamoun et al., 2021). Two key mechanisms for chromosomally

mediated colistin resistance have been identified. The first involves

LPS lipid A phosphoester group modifications, subsequent to

pmrCAB operon mutations, which alter the affinity of lipid A to

polymyxins by reducing its net negative charge. The operon pmrCAB

comprises the pmrC gene that encodes a phosphoEthanolamine

(pEtN) transferase, in addition to pmrA and pmrB, which encode

the two component system (TCS), PmrA/PmrB. Overexpression of

pmrC is induced by mutations in TCS (mainly pmrA) leading to

colistin resistance via pEtN-mediated modification of lipid A [8,9].

Discrete genetic events are required for an adequate colistin resistance
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level in A. baumannii, which are up-regulation of pmrAB, pmrB point

mutations, which leads to pmrC overexpression, and further addition

of pEtN to lipid A (Beceiro et al., 2011). The second mechanism

essentially involves termination of lipid A production due to various

nucleotide substitutions, deletions, and insertions in one of its

biosynthesis genes (lpxA, lpxC, and lpxD) that leads to frameshift

mutations or produce truncated proteins that damage lipid A

biosynthesis (Olaitan et al., 2014; Moffatt et al., 2019). In colistin-

resistant isolates, there are non-synonymous mutations in the lpxC

(P30L or S, N287D) and lpxD (E117K) genes that were previously

reported from different origins (Oikonomou et al., 2015). Both

colistin-susceptible and colistin-resistant isolates were found to

carry the amino acid substitutions N287D (lpxC) and E117K

(lpxD). It was also reported the possibility of these alterations in

amino acids together with a mutation in the pmrCAB operon could

result in synergistic effect that causes colistin resistance (Nurtop et al.,

2019; Jovcic et al., 2021; Usjak et al., 2022). Several studies have

focused on investigating the determinants of antibiotic resistance in

colistin-resistant A. baumannii isolates. In this study, we investigated

pmrCAB and lpxACD mutations in A. baumannii strains with

retained susceptibility to colistin. Additionally, we made a

comparative analysis of mutation patterns in colistin-susceptible

isolates from distinct sequence types (STs).
2 Materials and methods

2.1 Bacterial strains

A total of 18 clinical isolates of A. baumannii were collected

from the chemical and clinical pathology department at the Kasr

Al-Ainy Hospital, Cairo University, Egypt, in the period from July

to October 2020. All the isolates were obtained from patients at

intensive care unit (ICU) and neonatal intensive care unit (NICU).

The isolates were collected from blood, wound and sputum of adults

and neonates. These were cultured on MacConkey agar medium

(Oxoid, Altrincham, Cheshire, UK). Isolates were identified using

Gram staining and culture morphology and were further confirmed

using the VITEK 2 compact system (bioMérieux, Marcy l’Etoile,

France) and amplification of blaOXA-51-like genes using the

Polymerase Chain Reaction (Turton et al., 2006).

Ethics approval and consent to participate: This work has been

carried out in accordance with the relevant guidelines. The study

was approved by the local ethical committee of the Department of

Clinical and Chemical Pathology, Faculty of Medicine, Cairo

University. All the collected isolates were recovered for routine

investigations and no extra isolates were collected for the purpose of

the study. Informed consent was not necessary as there was no

direct contact with patients.
2.2 Antibiotic susceptibility testing

This test was performed on Mueller–Hinton agar (Oxoid,

Altrincham, Cheshire, UK) using the standard disk diffusion

method as per the Clinical and Laboratory Standards Institute
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guidelines (CLSI, 2020). A panel of 12 antibiotic disks, namely

amikacin, cefepime, cefotaxime, cefoxitin, ceftriaxone, imipenem,

levofloxacin, meropenem, piperacillin/tazobactam, tigecycline, and

trimethoprim/sulfamethoxazole (Oxoid, Altrincham, Cheshire,

UK) were used for the susceptibility profiling of the isolates.

Minimum inhibitory concentrations (MICs) for colistin

susceptibility were determined via the broth microdilution test.

The results of the antimicrobial susceptibility tests were interpreted

according to CLSI (2020) for all tested antimicrobial agents except

tigecycline and colistin for which the breakpoints of the European

Committee on Antimicrobial Susceptibility Testing (EUCAST,

2023) were used. As there is no tigecycline susceptibility

breakpoints for Acinetobacter spp., we used the breakpoints

specified for the Enterobacterales. While the CLSI (2020) has

abolished the classification of Acinetobacter spp. as colistin-

susceptible retaining only the intermediate (MIC ≤ 2) and

resistant (MIC ≥ 4) categories, Acinetobacter spp. isolates having

colistin MIC ≤ 2 are still categorized as colistin-susceptible by the

EUCAST (2023). Pseudomonas aeruginosa ATCC 27853 and

Escherichia coli ATCC 25922 were used as quality control strains.
2.3 Whole-genome sequencing (WGS),
multilocus sequence typing (MLST), and
analysis of colistin resistance genes

Draft genomes of the isolates were previously generated by us

(Hamed et al., 2022) via Illumina MiSeq sequencing (Illumina Inc.,

San Diego, CA, USA). Extraction of DNA and library preparation

were performed as previously described (Hamed et al., 2022).

Illumina reads were assessed for quality using FastQC (Andrews,

2010) and low-quality reads were trimmed using Trimmomatic

v0.32 (Bolger et al., 2014). SPAdes 3.14.1 was used for the de novo

assembly of the trimmed reads (Bankevich et al., 2012). QUAST

v5.0.2 (Gurevich et al., 2013) was used for generating the assembly

metrics. Annotation of the draft genomes was achieved using the

NCBI Prokaryotic Genome Annotation Pipeline (Tatusova et al.,

2016). For plasmid assembly, we used PlasmidSPAdes (Antipov

et al., 2016) and visualized the assembly graphs on bandage (Wick

et al., 2015). The isolates were additionally analyzed for multilocus

sequence types (MLST) using PubMLST server (https://

pubmlst.org/abaumannii/). The phylogenetic relationships among

each other, and with other international strains was analyzed using,

CSI phylogeny 1.4 online tool (https://cge.cbs.dtu.dk/services/

CSIPhylogeny/). Clonal complexes (CC) and global clones (GCs)

were inferred via goeBURST analysis using the Phyloviz software

version 2.0 (Ribeiro-Goncalves et al., 2016).

Our previous study focused on colistin resistance mechanisms

in a colistin-resistant isolate, M19. In contrast, herein, we analyzed

genes previously linked to colistin resistance in the colistin-

susceptible isolates. The annotated files were visualized using the

SnapGene v5.1.3.1, available at http://www.snapgene.com.

Mutations were determined by pairwise alignment against the

respective A. baumannii ATCC 19606 gene sequences using the

Basic Local Alignment Search Tool (BLAST) available at https://

blast.ncbi.nlm.nih.gov/Blast.cgi. Other colistin resistance genes
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were screened by the Comprehensive Antibiotic Resistance

Database (CARD) server (https://card.mcmaster.ca/analyze/rgi)

(Alcock et al., 2020).
2.4 Comparative analysis of pmrCAB
and lpxACD operons in other A.
baumannii genomes deposited
in the BV-BRC database

To confirm that the mutation pattern found in our colistin-

susceptible isolates is partly due to ST-related polymorphism, we

compared the pmrCAB and lpxACD operons carried by our strains

to strains sequenced in other studies. For this purpose, the public

genome sequences of A. baumannii strains having the same STs and

the closest genome sequences to our isolates were obtained from the

Bacterial and Viral Bioinformatics Resource Center (BV-BRC),

available at: https://www.bv-brc.org/, using the similar genome

finder tool. Using the same platform, we extracted the predicted

amino acid sequences of pmrCAB and lpxACD protein products.

Multiple sequence alignments were done using Clustal Omega

version 1.2.4 (https://www.ebi.ac.uk/Tools/msa/clustalo/) and

visualized using MView version 1.63, available at: https://

www.ebi.ac.uk/Tools/msa/mview/.
2.5 Zeta potential measurements

The zeta potential (ZP) of bacterial suspensions containing

1×109 CFU/mL was measured after 10-fold dilution. The zeta

cells were filled with bacterial cell suspensions, and the

electrophoretic mobility (EPM) of the cells was recorded at 150 V

and 25°C using a ZP analyzer (Malvern Zeta sizer Nano ZS,

Malvern, Worcestershire, UK). To ensure reproducibility of

measurements, a minimum of three runs per sample were

conducted as described before (Soon et al., 2011).
2.6 Statistical analysis

Statistical analysis of the ZP values was performed with

GraphPad Prism 8 software (GraphPad Software, San Diego, CA,

USA). Comparison of the ZP of the isolates within each GC was

done by the Student’s t-test and one-way analysis of variance

(ANOVA), where appropriate. Pairwise comparisons were done

using Tukey’s multiple comparisons test. P values less than 0.05

were considered statistically significant.
3 Results

A total of 18 cultures that grew MDR/XDR A. baumannii were

included in the study. Most patients were female and varied

between neonates and older females. All the isolates were

collected from ICU and NICU patients, and most cultures were

obtained from patients with the greatest proportion of samples
frontiersin.org
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recovered from blood and wounds. Amplification of the blaOXA-51-

like gene confirmed that the collected isolates were A. baumannii.

Most of the isolates belonged to GCs as shown in Figure 1.
3.1 Antimicrobial resistance profiles

All the isolates analyzed demonstrated high rates of resistance

toward the tested antibiotics, with the exception of polymyxin and

tigecycline, to which they were highly susceptible. Further, all

isolates were CRAB (imipenem- and meropenem-resistant) and a

total of five isolates were found to be amikacin-susceptible. Colistin

susceptibility was tested by the broth microdilution method, and the

MIC values obtained are shown in Figure 1. All the isolates were

colistin-susceptible, except for M19, with an MIC ≥128 µg/

ml (Figure 1).
3.2 Sequence analysis of genes related to
colistin resistance

The assembled data of the WGS analysis of the isolates revealed

the absence of mobile plasmid-mediated colistin resistance genes

(mcr1-10). Several non-synonymous mutations were found in

pmrB, pmrC, lpxC, and lpxD in the 18 isolates irrespective of

their susceptibility to colistin (Figure 2).

3.2.1 Amino acid substitutions in PmrCAB
While no mutations were found in pmrA among the 18 isolates,

at least 20 amino acid substitutions were detected in PmrC. These

included L2M, A28S, Q37T, V58l, T76N, V100l, V118F, l131V,

V151A, F166L, L218F, R230Q, Q232H, N300D, l342T, A370S,

V486l, H499R, K514N, and K531T (Figure 2). These amino acid

substitutions were observed in colistin-susceptible isolates and were

associated with colistin MICs that ranged from ≤0.125 µg/ml to 0.5
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µg/ml. M19, the only colistin-resistant isolate with an MIC ≥128 µg/

ml, harbored three mutations in pmrC. Of these two mutations

(N300D and A370S) were also found in the colistin-susceptible

strain M10 that is phylogenetically related to M19, while the third

mutation (V486I) could not be determined. Notably, N300D was

shared by all isolates. At least six mutations were ST/GC-specific.

These included V58I that was shared by all GC2 isolates, Q232H

that was carried by the two isolates that belonged to ST113Pas/GC7.

In addition, I342T, H499R, V461I, and K531T were specific for the

Pasteur STs ST85, ST19, ST164, and GC2, respectively. The

mutation I131V was shared between the isolates that belonged to

the STs ST113 Pas, ST85Pas, and ST19Pas, while A370S was shared

between ST164Pas isolates and GC2 isolates.

Eight missense mutations, namely H89L, Q110K, A138T,

G143C, F146C, P360Q, N440H, and A444V were detected in

pmrB. Of these, H89L was detected only in M19, while N440H

was found in all isolates. Two mutations were ST/GC-specific.

These included P360Q that is specific for ST19Pas/GC1 isolates

and A444V specific for GC2 isolates.

3.2.2 Amino acid substitutions in LpxCD
Only one missense mutation was found in the gene lpxC and

was predicted to be associated with the amino acid alteration

N287D. The mutation was detected in all isolates except M09 in

which the complete sequence of the gene could not be determined.

Further, five amino acid substitutions in lpxD, namely A12V, E18G,

V63I, E117K, and G166S were detected. No unique mutations were

found in the colistin-resistant isolate M19 compared to the colistin-

susceptible isolates.

The mutation E117K was specific for GC2 isolates, while G166S

was found in the two isolates that belonged to ST113Pas. The

mutation V63I was shared between two Pasteur STs namely

ST113 and ST164. Correlations between ST and colistin MIC in

the context of the detected mutations in the isolates analyzed are

illustrated in Figure 1.
FIGURE 1

Distribution of pmrCAB and lpxACD mutations in the tested isolates and correlation to STs/GCs and colistin MIC. No missense mutations were
identified in pmrA or lpxA in any of the tested isolates. Blue circles denote the presence of mutations; black circles means that the mutation could
not be determined due to incomplete gene sequence; white stars denote ST-specific mutations; grey stars denote mutations shared between more
than one ST; GC, global clone; MIC, minimum inhibitory concentration in µg/ml; STPas, sequence type according to Pasteur scheme; STOxf,
sequence type according to Oxford scheme.
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3.2.3 Other colistin resistance determinants
Genes encoding EptA (ethanolamine phosphotransferase), a

homolog of PmrC, were identified in 10 of the 18 isolates. These

were most commonly carried by the GC2 isolates (M01, M04, M05,

M13, M16, M17, and M20), and less frequently in the GC9 isolates

(M02 and M11). Only a single GC1 isolate (M12) harbored an EptA-

coding gene. The EptA-coding genes carried by M01, M12, M13,

M05, and M20 demonstrated similarity to eptA-2 (GenBank

accession: KC700023). Notably, none of the EptA-coding genes

were preceded by an ISAba1 element that is known to drive eptA

overexpression, which provides a PmrAB-independent mechanism

for colistin resistance. The isolates M02 and M11 carried the EptA-

coding genes on a 116,047 bp plasmid that showed 99.96% similarity

to a plasmid carried by A. baumannii, ACN21 (GenBank accession:

CP038645.1) (Figure 3). The genetic environment of EptA-coding

genes in other strains could not be identified.

Further, an examination of ISAba125 insertion into the H-NS

family transcriptional regulator-coding gene, previously linked to

high-level colistin resistance (Deveson Lucas et al., 2018) revealed

its absence in the colistin-resistant (M19) as well as the colistin-

susceptible isolates.
3.3 Comparison of pmrCAB and lpxACD
sequences to closely-related global strains

In order to confirm the association between pmrCAB and

lpxACD mutations and the STs/GCs rather than the phenotypic

resistance to colistin, we made a large-scale mutation analysis on

more isolates retrieved from the BV-BRC database. The operon

sequences of our isolates were compared to global strains with the

same STs. The multiple sequence alignments of the predicted amino
Frontiers in Cellular and Infection Microbiology 05
acid sequences of PmrC, PmrB, LpxC, and LpxD are shown in

Supplementary Figures 1-19. Our analysis confirmed the ST/GC

specificity of all mutations described in our isolates carrying the

same ST/GC. Some rare exceptions in which the wildtype genes

were retained were also evident.

This expanded analysis also showed that the pmrC mutation

V486I that was uniquely found in the colistin-resistant isolate M19

and could not be determined in the phylogenetically-related isolate

M10 (Figure 2) was likely a ST-related polymorphism. This was

evidenced by the existence of this mutation in all strains that

belonged to the same ST. In contrast, the pmrB mutation H89L

was only detected in M19 and three other foreign strains included in

our analysis (151, 198, and GML-KP48-AB-TR). Unfortunately, the

colistin susceptibility of the three strains was not available. Hence,

further analysis is required to investigate the exact role of this

mutation in colistin resistance.

Furthermore, we searched the metadata of the global strains

included in the current study for colistin susceptibility. While the

susceptibility profiles were not available for the majority of the strains,

colistin susceptibility was reported for 33 strains. Only two strains

namely, MS14413 (STPas 2) and Ab-NDM-1 (STPas 85), were reported

to be colistin-resistant. In addition to the ST/GC-related polymorphism

reported in the current study, MS14413 carried a unique mutation in

pmrB that was associated by the amino acid alteration T232I. Similarly,

only one uniquemutation was found in Ab-NDM-1. This was found in

pmrB gene and was associated by the amino acid alteration T187P.
3.4 Zeta potential alteration

A negative ZP was obtained for all tested isolates. The colistin-

susceptible isolates revealed ZP values ranging from -20.8 ± 0.666 to
B

A

FIGURE 2

Gene maps showing point mutations identified in pmrCAB operon (A) and lpxD gene (B) carried by the tested isolates. Numbers denote codons
affected by mutations. Mutations written in red are the unique mutations detected in the colistin-resistant isolate M19 but could not be determined
in its phylogenetically related isolate M10. Mutations of lpxC were not shown as only one mutation (N278D) was carried by all isolates. TMD,
transmembrane domain; SD, Sulfate domain; RD, receiver domain; TRD, transcriptional regulatory domain; PD, periplasmic domain; HisKA, histidine
kinase A domain; HATPase_c, histidine kinase-like ATPase. Domain locations were adapted from Gerson et al. (2020) and Ko et al. (2017).
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-8.70 ± 0.627 mV. The ZP value of colistin-resistant cells (M19) was

considerably less negative than that of the colistin-susceptible

strains (-5.11 ± 0.77), while its phylogenetically-related colistin-

susceptible isolate M10 had a less negative ZP (-3.71 ± 0.676) than

all other colistin-susceptible strains and the resistant isolate M19.

The ZP values of A. baumannii cells of all strains are shown

in Figure 4.

Student’s t-test and One-way ANOVA were used for comparing

the ZP values of all isolates within each GC/ST, while comparisons

of the groups of isolates that belonged to different ST/GC were

analyzed by one-way ANOVA. The difference between the ZP

values of the isolates within each ST/GC was statistically

significant (P-values <0.001). Additionally, a statistically

significant difference was found between the ZP values of the

isolates that belonged to different STs/GCs (P-value <0.0001) but

pairwise comparisons showed that this significant difference exists

only between GC11 isolates and others (P-values are shown in

Supplementary Figure 20).

To investigate the relationship between the ZP and colistin

resistance, pairwise comparisons were done between the ZP of

individual isolates using the colistin-resistant strain M19 as a

control. Significant difference was found between the ZP value of

M19 and all other isolates except the phylogenetically-related
Frontiers in Cellular and Infection Microbiology 06
colistin-susceptible isolate M10. P-values of the Tukey’s multiple

comparison test are shown in Supplementary Figure 21.
4 Discussion

Treatment failure in A. baumannii is very common due to lack

of understating the exact mechanisms of resistance to antibiotics

together with the absence of novel therapies. In recent years, the

alarming increase in the rates of CRAB strains in Egyptian hospitals

have forced the reuse of colistin for treating these pathogens.

Colistin is the antibiotic of choice for treating CRAB infections in

healthcare facilities, a significant challenge to infection control in

nosocomial settings. Elucidating the exact mechanisms that mediate

and control colistin resistance is thus crucial to preserve its efficacy.

To explore the relationship between chromosomally-mediated

mechanisms of colistin resistance and the colistin resistance

phenotype, we investigated 18 clinical isolates of A. baumannii

collected from ICU and NICU patients by WGS. All of the isolates

were previously characterized for MLST according to Pasteur and

Oxford scheme. Some isolates were assigned two Oxford STs due to

carrying two copies of gdhB locus, as described before (Gaiarsa

et al., 2019). Most of the isolates belonged to high-risk GCs
FIGURE 3

Circular map of 116,047 bp plasmid carried by M02 and M11 harbouring eptA gene. The plasmid showed highest similarity to another plasmid carried
by A. baumannii strain ACN21 (GenBank: CP038645.1). The gene eptA was labelled in red and was not preceded by ISAba1 previously reported as
essential for overexpression. The map was generated using the Proksee web server (https://proksee.ca/).
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including GC1, GC2, GC7, GC9, and the most recently described

clone, GC11 (Hansen et al., 2023).

Given the importance of studying resistance mechanisms in

distinct strains, genetic investigation was carried out in colistin-

susceptible strains. Detecting the MIC of colistin using the broth

microdilution method is the only reliable method and remains the

gold standard for assessing colistin resistance in A. baumannii

approved by both the CLSI and by the EUCAST (CLSI, 2020;

EUCAST, 2021). Of the 18 isolates analyzed, only a single strain,

M19, demonstrated colistin resistance with an MIC ≥128 µg/ml.

This percent of resistance was much lower than that was recently

reported in Egypt in a study conducted on 17 A. baumannii isolates

in which nine of them were colistin-resistant (Fam et al., 2020). It is

noteworthy to mention that high rates of resistance toward different

antibiotics were detected among our studied collection, and this

could be attributed to the fact that high resistance patterns are

usually observed in critically ill hospitalized patients due to

existence of comorbidities and the overuse of antibiotics.

The plasmid-mediated colistin resistance determinants mcr

genes were not detected in our studied isolates. This goes in line

with most of studies conducted on colistin-resistant A. baumannii

isolates. Moreover, the studies that reported the existence of mcr

genes failed to sequence any mcr variants (Khoshnood et al., 2020;

Snyman et al., 2020). Instead, pmrAB mutations appears to be the

driving mechanism of colistin resistance in A. baumannii in most of

published reports (Seleim et al., 2022). A total of 34 point mutations

were identified in our strains (Figure 2) within the pmrCAB and

lpxACD operons. The association of colistin resistance in A.

baumannii with mutations in the putative two-component

regulatory system PmrAB was first reported in 2009 (Adams

et al., 2009). Although previous studies have reported mutations

in the response regulator-coding gene pmrA (Arroyo et al., 2011;

Lesho et al., 2013), we observed none. Colistin resistance is

primarily a consequence of mutations in the pmrCAB operon,

especially in the pmrB region (Nurtop et al., 2019), and we
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observed the highest number of mutations in the pmrC region.

Sequence analysis revealed eight amino acid substitutions in PmrB

and 20 amino acid substitutions in PmrC, all of which were detected

in colistin-susceptible isolates, except for the single colistin-resistant

strain, M19. Thus, it may be inferred that not all amino acid

substitutions result in elevated colistin MICs. Seleim et al. (2022)

reported that the pmrC expression level could not differentiate

between colistin-resistant and colistin-susceptible isolates, and they

observed that the correlation between pmrC expression levels and

colistin MICs was not significant (Seleim et al., 2022). Additionally,

this was also reported by Gerson et al. (2020). Thus, it is therefore

concluded that colistin resistance mechanisms in A. baumannii are

much more complicated than believed. The resistant strain M19

harbored unique and distinct mutations in pmrC and pmrB, and

none in pmrA. These included three substitutions in PmrC,

including N300D, A370S, and V486I, and two substitutions,

namely H89L and N440H in PmrB. Notably, V486I and H89L

were only observed in this strain. The H89L substitution in PmrB

(Nurtop et al., 2019) and the V486I substitution in PmrC (Srisakul

et al., 2022) have been previously reported in colistin-resistant A.

baumannii isolates. While found here in colistin-susceptible isolates

that belonged to three STs, some pmrC mutations (I131V and

H499R) and pmrB mutations (P360Q) were previously linked to

resistance to colistin (Arroyo et al., 2011; Misic et al., 2018). In

agreement with our findings, N440H and A444V mutations of

pmrB were previously predicted not to affect colistin susceptibility

(Thi Khanh Nhu et al., 2016). To completely understand lipid A

modification and the resulting colistin-susceptible phenotype, the

effects exerted by pmrCAB mutations on the expression of pmrC

require further investigation.

A total of six diverse LpxCD amino acid substitutions in

colistin-susceptible A. baumannii strains were evident. The

colistin-resistant isolate M19 harbored the mutation N287D in

lpxC that was also present in the colistin-susceptible isolates. A

previous study reported that mutations in lpxD or pmrB alone may
FIGURE 4

ZP values (mean±SD) of colistin-susceptible and resistant A. baumannii cells. Same colors refer to phylogenetically related isolates. M01, M04, M05,
M13, M16, M17, and M20 all belong to GC2. M02, M11 and M18 has the same STPas85 and belong to GC9. M03 and M14 have the same STPas113 and
belong to GC7. M06, M09, M12 and M15 belong to GC1. M10 is clonally related to M19 STPas164 (GC11).
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suffice to induce colistin resistance, thus suggesting synergism

between the effects of mutations within these genes in promoting

the same (Nurtop et al., 2019). The diverse range of amino acid

substitutions reported in this study, some of which have been

previously described, suggest that the exact colistin resistance

mechanisms in A. baumannii requires extensive investigation.

Interestingly, conserved mutation patterns were mostly found in

A. baumannii strains that belonged to the same ST/GC, particularly

those inferred by the Pasteur scheme, regardless of their

susceptibility to colistin. This was further confirmed by an

expanded analysis in which more strains with the same STs as

those identified here were included in the mutation analysis. Hence,

we here emphasize the importance of carefully analyzing colistin

resistance-related mutations with reference to a colistin-susceptible

strain that belongs to the same ST as the one under investigation.

Otherwise, the mechanisms underlying colistin resistance may be

incorrectly inferred and the real contributors to colistin resistance

may be overlooked. We found many studies that investigated

pmrCAB and lpxACD mutations with reference to A. baumannii

ATCC 19606 and ATCC 17978 that may lead to overestimation of

mutation-related resistance and overlooking the real mechanism of

resistance (Mavroidi et al., 2015; Haeili et al., 2018; Nurtop et al.,

2019; Jovcic et al., 2021; Eze et al., 2022; Usjak et al., 2022; Kabic

et al., 2023).

As the susceptibility profiles of the global strains included in our

study were revised, only two strains with confirmed colistin

resistance were identified (MS14413 and Ab-NDM-1).

Interestingly, the only unique mutations identified in the two

strains were found in pmrB, confirming the crucial role of this

gene in driving colistin resistance. Notably, other mutations

identified by the authors as a contributor to colistin resistance in

Ab-NDM-1 were the pmrC mutations I115V, N284D, and I326T

(Fernandez-Cuenca et al., 2020). These correspond to the mutations

I131V, N300D, and I342T (according to the numbering of A.

baumannii ATC 19606, GenBank CP059040) identified here as

polymorphism. This further emphasizes the importance of the data

presented here for the correct interpretation of pmrCAB and

lpxACD mutations.

The bacterial surface charge has frequently been described in

terms of ZP, which is the potential at the shear plane of the electrical

double layer surrounding a cell in solution (Soon et al., 2011). Our

results showed that the colistin-resistant cells display less negative

ZP than the colistin-susceptible cells. The less negative ZP exhibited

by the colistin-resistant isolate M19 in comparison to that of the

colistin-susceptible cells has been previously explained to be a

consequence of alterations in the structure and composition of

the outer membrane (Soon et al., 2011). Colistin-resistant cells were

previously reported to have more propensity for clumping in small

clusters compared to colistin-susceptible cells (Soon et al., 2009).

This was justified by the higher colloid aggregate stability within the

particle carrying a lower magnitude of charge due to reduced

electrostatic repulsion (Klodzinska et al., 2010). Lipid A

phosphates esterification with 2-aminoethanol or 4-amino-4-

deoxy-L-arabinose resulting in charge shielding has been reported

before in colistin-resistant E. coli (Gatzeva-Topalova et al., 2005)

and Pseudomonas aeruginosa (Gooderham and Hancock, 2009).
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Unexpectedly, M10, a colistin-susceptible isolate, exhibited the

lowest negative ZP among all the isolates. Notably, this isolate is

phylogenetically related to M19 (the colistin-resistant isolate) as

described previously (Hamed et al., 2022), and thus the aberrant

zeta potential may either be a consequence of cell membrane

alterations or a reflection of ST-related polymorphism. Statistical

analysis of the ZP values of all isolates revealed a significant

difference between the ZP values of the isolates that belonged to

the same ST/GC. This contradicts our hypothesis that the isolates

that belong to the same ST/GC may have similar ZP values. More

studies are recommended to better understand the relationship

between STs and the ZP of A. baumannii.

The existence of the alternative pEtN transferase named

ethanolamine phosphotransferase A-1 (EptA) in A. baumannii

was previously demonstrated by Lesho et al. (2013). The authors

described two PmrC homologs designated EptA-1 and EptA-2 that

were localized outside the pmrABC operon. The same study has also

reported the overexpression of eptA-1 and eptA-2 in the colistin-

resistant isolates. Another study conducted on a pair of MDR A.

baumannii by Deveson Lucas et al. (2018) indicated that

overexpression of the “orphan” eptA in a pre-colistin-treatment

A. baumannii strain resulted in increased colistin resistance

(Deveson Lucas et al., 2018). This finding provides evidence for

eptA encoding a functional pEtN transferase that mediates colistin

resistance (Deveson Lucas et al., 2018). In our collection, EptA-

coding genes were harbored by the GC2 isolates (M01, M04, M05,

M13, M16, M17, and M20), two GC9 isolates (M02, M11) and a

single GC1 isolate, M12. None of the eptA genes identified here was

preceded by ISAba1 insertion. This confirms the assumption made

by Potron et al. (2019) that overexpression of eptA genes, and

subsequently colistin resistance is a consequence of an upstream

insertion of an ISAba1 element (Potron et al., 2019).

The insertion of ISAba125 within a gene encoding an H-NS

family transcriptional regulator was previously linked to eptA

overexpression and colistin resistance (Deveson Lucas et al.,

2018). This was not found in any of our isolates.
5 Conclusion

Our study reinforces the need for extensive investigations for the

elucidation of the exact mechanisms that contribute to colistin

resistance in A. baumannii, which consequently influences possible

therapeutic options. Colistin resistance mechanisms in A. baumannii

are complex and not easily understood. Multiple mutations in pmrCAB

and lpxACD are unlikely to result in increased colistin resistance. The

evaluation of mutations with reference to colistin-susceptible isolates of

the same ST/GC is essential to avoid misinterpretation of ST/GC-

related polymorphisms. Evidence was provided by expanding our

analysis to include A. baumannii strains with the same STs as our

isolates retrieved from a public database. Further, large scale studies

including more colistin-resistant and colistin-susceptible strains are

recommended to better establish the relationship between the ZP and

colistin resistance and to confirm, with statistical evidence, the ST-

related polymorphism of pmrCAB and lpxACD operons that may exist

in both colistin-susceptible and colistin-resistant strains.
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