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Abstract
Huge quantities of vegetables and fruits by-products are discarded annually worldwide following the industrial food pro-
cessing techniques. These biowastes were found to cause further environmental hazards. However, they could represent rich 
sources of numerous bioactive metabolites and substrates for high valued products. Specifically, onion (Allium cepa L.) 
and potato (Solanum tuberosum L.) are of economic importance since they are cultivated and found as chief components of 
most food recipes worldwide. Nevertheless, potato peels and the outer onion scaly leaves are major non-edible by-products. 
Both biowastes are rich in bioactive phenolic compounds, whereas potato peels are rich in chlorogenic acids and onion 
solid wastes in flavonoids, particularly flavonols (quercetin derivatives). Also, they are good sources of dietary fibers, fatty 
acids, starches, sugars and proteins. In addition, they are potential candidates for biofuels production. Hence, with the recent 
advances of bio-refinery concepts valorization of such treasures is highly recommended. The current review highlighted 
the major metabolic classes of onion and potato agro-industrial wastes and how we can utilize the available possibilities to 
maximize the recovery and benefits of metabolites found in these wastes.
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Novelty Statement

The current review highlights two of the most discarded 
vegetable agro-industrial biowastes, i.e., onion and potato 
peels, comprehensively. Both biowastes are discussed in a 
comparative approach showing the potential phytoconstit-
uents, including bioactive phenolic compounds, whereas 
potato peels are rich in chlorogenic acidsand onion solid 
wastes in flavonoids, particularly flavonols. In addition, 
they are potential candidates for biofuels production. 
Hence, with the recent advances of biorefinery concept, 
valorization of such treasures is highly recommended. The 
manuscript is the original work of the authors and the nov-
elty in results is given.

Introduction

The state-of-the-art biorefinery has been evolved in the 
past few decades as a platform to integrate the industrial 
processes optimizing the utilization of terrestrial and 
marine raw biomasses rich in cellulose, hemicellulose, and 
lignocellulose contents, for production of high valued fine 
chemicals and biofuels [1]. The application of this concept 
has provided sustainable resources for diverse industrial 
sectors through the combination of various biotechnologi-
cal with chemical conversion strategies [2]. For instance, 
production of lactic acid, succinic acid, and itaconic acid 
were possible from beech wood via chemo-catalytic bio-
mass fractionation followed by fermentation with microor-
ganisms, including Aspergillus terreus and Ustilago may-
dis using the produced glucose from cellulose hydrolysis 
as carbon source [3]. In addition, bio-butanol was reported 
as an important product upon fermentation with Clostrid-
ium acetobutylicum [4].

With the same concept, valorization of agricultural 
biowastes was applied in eco-friendly ways to produce 
valuable products for various foods, medical, and indus-
trial applications [5]. As a result of increasing the global 
population and post-harvesting agro-processing and food 
industries, the Food and Agriculture Organization (FAO) 
has recently estimated the discarded biowastes at approxi-
mately 1.3 billion tons/year [6]. Such non-edible by-prod-
ucts have demonstrated their richness in wide spectrum 
of phytochemical classes, including fatty acids, phytos-
terols and tocopherols in Citrus seeds [7], dietary fibers 
in pomegranate peels [8], and phenolic compounds and 
sesquiterpene lactones in artichoke bracts, exterior leaves, 
and stalks [9, 10].

Specifically, onion (Allium cepa L.) and potato (Sola-
num tuberosum L.) are of economic importance grown 

worldwide, where they are chief components of diverse 
dishes [11, 12]. Onions are highly consumed leading to the 
production of massive quantity of onion solid wastes; outer 
fleshy scales, roots top, bottom bulb part, onion skins, and 
undersized onion bulbs [13, 14]. In addition, potato is rec-
ognized as the fourth cultivated crop after wheat, corn, 
and rice in more than 158 countries feeding over a billion 
people worldwide with also various kinds of biowastes 
[15–17]. It is also noteworthy to mention that potatoes 
biodiversity is vast of about 4000 varieties with 200 wild 
species and 10 cultivated species [18].

Both biowastes are rich in prolific metabolites, includ-
ing dietary fibers and polyphenolics mainly flavonoids and 
phenolic acids [15, 18, 19]. In addition to the richness of 
potato by-products in steroidal glycoalkaloids, including 
α-chaconine and α-solanine [20, 21] that pose them poten-
tial candidates for production of valuable products benefi-
cial for different medical, food, and pharmaceutical sectors 
[22–24]. Peeling leads to losses in dietary fiber and several 
bioactive constituents [9]. Giving the aforementioned points, 
classical and non-conventional extraction methods have been 
optimized to maximize the recovered yields of their metabo-
lites,  as the use of microwave-assisted extraction (MAE) for 
anthocyanin from onion peels [22] and conventional ethanol 
extraction of phenolics (e.g., flavonoids) from potato peels 
and with the aid of surface response methodology [23].

Targeting molecules with health-promoting proper-
ties are the most interesting trend nowadays. The aim of 
this work was to support a systematic review of onion and 
potato wastes as functional foods for their interesting and 
rich phytochemical constituents with biomedical poten-
tials. The advantage of these wastes is owed to their low 
initial costs value, non-competitiveness to food, abundance, 
renewability, and availability. Therefore, the current review 
highlighted different aspects for the valorization of such 
biowastes. The phytochemical composition, extraction 
optimization, health benefits, and industrial applications are 
discussed, which could aid in the rediscovery of new drug 
candidates and nutraceuticals from well-known vegetable 
wastes.

Phytochemical Composition

Vegetable wastes have a great potential as residual sources of 
many bioactive components. Onion wastes were reported to 
have significant amount of numerous dietary compounds and 
bioactive phytonutrients, including phenolics, anthocyanins, 
flavonoids (e.g., quercetin and quercetin glucosides), sugars, 
minerals (e.g., chromium, manganese, molybdenum, folates, 
iron, zinc, potassium, magnesium, calcium, and copper), fib-
ers, and vitamins. Red onions have the highest contents of 
flavonols and anthocyanins, then the yellow onions. Potato 
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peels are rich source of nutritional compounds, i.e., phe-
nolics especially chlorogenic acid, glycoalkaloids, starches 
and fatty acids, which enhance foods’ nutritional benefit. 
The determination of the total phenolic compounds in peel 
extracts is commonly estimated using the Folin-Ciocalteu 
method. Where, for the identification and quantification of 
individual compounds present in the tested extracts, tech-
niques such as High-Performance Liquid Chromatography 
(HPLC), using different detectors, as the DAD (Diode Array 
Detector) and the ESI–MS (Electrospray Ionization and 
Mass Spectrometer) are widely used as their high efficiency 
[24].

In the next subsections, the major phytochemicals in both 
biowastes are discussed in detail. In addition, the chemical 
structures of important compounds are traced in Table 1.

Polyphenols

The non-edible parts of the onion bulb contain polyphenols 
(Table 1) which are not present in the edible bulbs.

Onion Peels

Flavonols are the major class detected in the onion extracts, 
where quercetin derivatives being the most common ones 
exclusively with glucose linked to the 4′, 3, and/or 7-posi-
tions. Quercetin-4′-glucoside and quercetin 3,4′-diglucoside 
have been found in almost previous works as the main ones. 
Whereas kaempferol and isorhamnetin derivatives were 
reported as minor flavonols. In a comparison between 75 
onion cultivars grown in Texas, the soil type, location, and 
growth stage affected the total flavonoids content. Where, 
quercetin aglycone was identified as the major flavanols 
of the cultivars. Flavonoids were present in the edible por-
tions of Allium species in a range of < 0.03 to > 1 g/kg where 
onion wastes had higher amounts than edible parts of about 2 
to 10 g/ kg [25]. Despite the importance of these flavonoids 
in onion wastes, they almost stay unused when processing. 
The identified compounds were summarized in Table 1.

Furthermore, nine phenolics were detected using 
HPLC analysis in the methanolic extract of onion as 
2-(3,4-dihydroxybenzoyl)-2,4,6-trihydroxy-3(2H)-ben-
zofuranone, with compounds 8, 57, 80, 81, 82, and 83 as 
shown in Table 1 [26]. In addition to compounds 20, 21, 22, 
29, 33, 45, and 46 (Table 1) were also reported as minor con-
stituents. Anthocyanidins and phenolic acids were identified 
by reverse-phase HPLC using retention times and UV–vis-
ible absorption spectra.

Additionally, compounds 24, 25, 27 and 29 (Table 1) 
were detected using HPLC analysis as the major constitu-
ents in onion grown in Canada and the USA while, com-
pounds 26, 42, 45 and 37 (Table 1) were the minors [27]. 
In another study, the following compounds were isolated; 

compounds 36, 38, 39, 40, 46 and 48 (Table 1) from meth-
anolic extracts of the dry outer scales of red onion [28]. 
The structures were established mainly by extensive use of 
2D NMR spectroscopy and electrospray LC–MS.

Moreover, compounds 24, 27, 30, and 35 (Table 1) were 
detected in red onions using HPLC-analysis, and spec-
tral measurements were made over the wavelength range 
210–600 nm in steps of 2 nm. Two pelargonidin deriva-
tives, compounds 34, and 41 (Table 1) were also reported 
in traces in three red onion cultivars, top onion (A. cepa 
var. Vivi-parum), A. altaicum and Chive (A. schoenopra-
sum) [29]. Where, the brown skin of red onion cultivars, 
cvs Recas and Figueres, from commercial production in 
Spain, showed the presence of compounds 55, 56, 57, 60, 
72, and 74 (Table 1) by HPLC analysis. Quercetin 4′-glu-
coside was the main flavonol in whole onion, the top–bot-
tom and brown skin, where quercetin 3,4′-diglucoside was 
the main in inner and outer scales [30].

In another study, the authors investigated the stabil-
ity of the detected flavonols in onion wastes, and docu-
mented that the glycosides undergo hydrolysis firstly, 
while β-glycosidase, peroxidase and oxidative cleavage 
were responsible for quercetin degradation. Where the 
release of quercetin from its glycosides by hydrolysis pro-
gresses faster than quercetin decomposition [31].

Pearl, Red, Yellow, and White varieties of onions pur-
chased from a local market in Canada were investigated 
using HPLC also and the data revealed the presence of 
compounds 53, 55, and 66 (Table 1) as the main poly-
phenolics in all tested extracts [32]. HPLC analysis was 
performed to quantify the levels of phenolic acids and 
flavonoids in Yellow onion peel (Gyeongsangnam-do, 
Korea) alcoholic extract, revealing morin, vanillic acid 
(compound 12), epicatechin, and p-coumaric acid (com-
pound 9) as the richest antioxidant compounds present 
in onion peel extract [33]. They were in concentration of 
583.2 ± 9.4, 245.0 ± 3.5, 275.0 ± 3.3, and 158.7 ± 5.7 μg/g 
of onion peel dry weight basis.

Phenolics were also detected in onion skin powder of 
the Red variety purchased from an Egyptian local market, 
using HPLC, among which coumarin, pyrogallol, com-
pounds 1, 2, 4, 6, 7, 8, 9, 10, 13, 15, 17, and 19, 7-hydrox-
yflavon, naringin, compound 84, catechol, compound 85, 
compound 54, compound 65, compound 61, epicatechin, 
caffein, compound 77, hesperetin, compound 55, and 
compound 66 were detected as major components [34]. 
Furthermore, onion solid wastes, purchased from a local 
grocery store (Myrina, Lemnos), were investigated for 
their polyphenolics using LC–DAD–MS analysis, reveal-
ing 13 compounds; 2-(3,4-dihydroxybenzoyl)-2,4,6-trihy-
droxybenzofuran-3(2 H)-one, compounds 7, 55, 56, 57, 
23, 59, 25, 73, quercetin 4`-O-glucoside/quercetin dehy-
drate adduct, quercetin 4’-O-glucoside/quercetin adduct, 
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1 3

quercetin dehydrodimer, and protocatechuic acid deriva-
tive [35].

The flavonol glycosides from onion solid waste, col-
lected from the Nong Hyeop onion processing institute 
(Muan, Republic of Korea), were quantified using HPLC 
and the amount of quercetin-4`-O-monoglucoside was 
254.85 mg/100 g dry weight, quercetin-3, 4`-O-digluco-
side was 27 162.34 mg/100 g dry weight, quercetin was 
60.44 mg/100 g dry weight, isorhamnetin-3-glucoside was 
23.92 mg/100 g dry weight [36]. Also, onion peel and skin 
extracts were investigated using the HPLC–MS analysis, 
where phenolics and flavonoids were identified in both sam-
ples and summarized in Table 1 [37]. Additionally, querce-
tin-3,4'-O-diglucoside, quercetin-4'-O-monoglucoside, and 
quercetin were isolated from the tested wastes obtained from 
processed Yellow onion bulbs from Mokpo Experimental 
Station, National Institute of Crop Science, Muan (Republic 
of Korea) using HPLC/DAD and a Zorbax Eclipse XDB C18 
column identified and identified using several spectroscopic 
methods [38].

The aqueous extract of dry onion skin waste from the 
Dorata di Parma cultivar was analyzed using HPLC–UV/
DAD analysis of the onion water extract at 254 nm and the 
data showed the presence of phenolic acids with flavonols 
and were shown in Table 1 [39]. Moreover, the outer dry lay-
ers of onion cultivar (Ramata di Montoro) extracts obtained 
by ultrasound assisted and supercritical fluid extractions by 
UHPLC-UV-HRMS/MS analysis and led to identification of 
15 compounds namely; 2-(3,4-dihydroxybenzoyl) − 2,4,6-tri-
hydroxy-3(2H)-benzofuranone, quercetin, protocatecoyl 
quercetin, and other compounds were shown in Table 1 [40].

Red onions were reported to contain anthocyanins as 
compounds 22–28 (Table 1) and characterized using dif-
ferent spectral methods [41]. Furthermore, the peel waste 
extracts of triploid onion and diploid onion varieties were 
analyzed using HPLC and flavonols with anthocyanins were 
the significant metabolites identified. It was worth noting 
that their amounts were higher than present in onion bulb 
extracts. Five anthocyanins were present in the Red and 
Yellow varieties of A. cepa. Malvidin-3-O-glucoside, peo-
nidin 3-O-glucoside, delphinidin 3-O-glucoside, cyanidin 
3-O-glucoside, and petunidin 3-O-glucoside were the iden-
tified anthocyanins in both samples with their acetate form 
[42]. Peonidin-3-O-glucoside acetate and petunidin-3-O-
glucoside acetate were in the Red variety of A. cepa, while 
peonidin and petunidin-3-O-glucoside were in the yellow 
variety. Also, eight anthocyanins were detected in the Red 
onion skins extract by HPLC/DAD, Japanese cultivar Kure-
nai showed the presence of several anthocyanins and were 
shown in Table 1 [43].

Additionally, red onion solid waste were investigated, 
where the major compounds were drawn in Table 1 [44]. 
In another study, the authors reported that onion peel had 

a concentrated amount of quercetin than the edible fleshy 
part [45]. Onion peel of Rossa di Tropea and Ramata di 
Montoro onion varieties from Italy were investigated also 
using UHPLC-HRMS analysis and a total of 22 phenolics 
and were summarized in Table 1 [46]. In another study, Red, 
Yellow and White onion varieties, and red shallots were 
investigated and also the authors proved that the waste frac-
tions were more abundant in quercetin and showed higher 
antioxidant capacities, compared to their edible parts [47].

Potato Peels

Potatoes have higher content of phenolics than the other 
widespread fruits and vegetables. Phenolics reported in pota-
toes are phenolic acids and flavonoids (flavonols, flavanols, 
and anthocyanins) [48]. Phenolic compounds in potato peels 
are up to 10 times more than in potato flesh [21]. Singh 
and coauthors reported that the Purple- or Red-peel culti-
vars have 3 to 4 times more phenolics as compared to the 
White-peel cultivars, and these could be due to anthocyanins 
detected [21].

Phenolics in potato peels are different according to the 
genotype (variety of the potato cultivars), peel color, and 
geographical location. For example, the Yukon Gold vari-
ety was reported to have a total phenolics of 23.8 mg/100 g, 
while the Russet Norkotah variety had 52.7  mg/100  g 
dry matter [49]. Also, purple or pigmented peels have 3 
to 4 times more phenolic acids as compared to the white 
ones [20]. Most of the phenolics (90%) in potatoes were 
reported in several works to be chlorogenic acid [50, 
51]. Where, tubers of six varieties of potato, Kennebec, 
Norchip, Russet Burbank (brown-skinned), Red Nor-
land, Red Pontiac, and Viking (red-skinned) were inves-
tigated. The peel extracts of red and brown varieties 
quantified using HPLC the presence of protocatechuic 
(216.0–256.0 mg/100 g dry matter), p-coumaric (41.8–45.6 
/100 g dry matter), caffeic (278.0–296.0 mg/100 g dry 
matter), chlorogenic (753.0–821.3  mg/100  g dry mat-
ter), p-hydroxybenzoic (82.0–87.0  mg/100  g dry mat-
ter), ferulic (174.0–192.0  mg/100  g dry matter), gal-
lic (58.6–63.0  mg/100  g dry matter), and vanillic 
(43.0–48.0 mg/100 g dry matter) acids. Where, Red skins 
had more total phenolics than the brown ones [52].

Phenolic compounds were extracted using methanol, 
where chlorogenic, gallic, protocatechuic, and caffeic acids 
were detected as the major compounds by HPLC analysis 
of potato peels [53]. The total phenolics was quantified by 
HPLC as 48 mg/100 g dry matter. The authors reported that 
chlorogenic acid was degraded to caffeic acid. Two stud-
ies investigated the peels of colored potato varieties and 
reported using analytical HPLC revealed the presence of 
catechin, epicatechin, eriodicytol, kaempferol 3-O-rutino-
side, naringenin as the major components [54, 55]. The total 
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phenolics of 92 extracts from edible and nonedible medici-
nal plants were estimated using the Folin-Ciocalteu assay 
and calculated as gallic acid equivalents. The peels of pota-
toes are potential source of phenolics and could be used as a 
strong antioxidant agent. Where, the total phenolics of Rosa-
munda potato peels were 4.3 mg of gallic acid equivalents/g 
of dry potato peel and 2.5 mg of gallic acid equivalents/g of 
dry potato peel of Matilda cultivar [56].

Moreover, The anthocyanins in Skin of Desiree (Pink 
skin/ White flesh) cultivar from New Zealand were investi-
gated as peonidin-3-(p-coumaroyl-rutinoside)-5-glucoside 
and pelargonidin-3-(p-coumaroyl-rutinoside)-5-glucoside as 
majors anthocyanin detected by HPLC, with pelargonidin-
3-rutinoside, and pelargonidin-glycoside as minors [57]. 
Furthermore, potato peels (Kufri Chandromukhi) exhibited 
gallic acid, caffeic acid, chlorogenic acid and protocatechuic 
acid as the major phenolics present. The extract showed high 
phenolic content (70.82 mg of catechin equivalent/100 g dry 
matter), of that chlorogenic acid (27.56 mg/100 g dry mat-
ter) was the major phenolic acid [49]. Phenolics present in 
the skin were more than flesh tubers of potato. Although, 
the skin was the richest in the phenolics, which is discarded 
during the consumption of potato as analyzed by spectro-
photometry and HPLC [56].

Additionally, quantitative estimation of free and bound 
forms of phenolic compounds in peels were 1.26 and 
3.66 mg ferulic acid equivalents/g of dry weight, respec-
tively [58].

Jansen and Flamme investigated 27 potato cultivars from 
Germany, and reported that the anthocyanins in the skin 
of the colored potato varieties was 2.5-fold higher than 
flesh using spectrophotometric analysis [59]. The results 
showed also that the colored skin variety had higher antho-
cyanins contents in their skin than other cultivars. Caffeic 
(38.6 ± 0.1 mg/ 100 g dry matter), and gallic (26.5 ± 0.2 mg/ 
100 g dry matter), then protocatechuic (18.8 ± 0.1 μg/100 g 
dry matter) followed by chlorogenic acids (16.0 ± 0.2 mg/ 
100 g dry matter) were the major phenolics identified in 
the peels of potato by HPLC [60]. The total polyphenolics 
in potato peel extract was 3.93 mg/g powder as quantified 
by HPLC. The good quantity of these phenolics supports 
the fact that those peels showed a potent antioxidant activ-
ity. The total phenolic content in six varieties of potatoes 
(Siècle, Vivaldi, Yukon Gold, Purple Majesty, FL 1533 and 
Dakota Pearl), obtained from Canada, including Purple and 
Yellow potatoes, ranged from 1.51 to 3.32 mg gallic acid 
equivalent/g dry potato peel powder, the highest were found 
in the peel extracts from red-color potato varieties, Siècle 
and Purple Majesty, may be due to the anthocyanins detected 
in these varieties of potatoes [61]. Chlorogenic acid was pre-
sent as the major one (62.4–85.6 mg/ 100 g dry matter) then 
caffeic acid in all tested extracts (14.4–37.6 mg/100 g dry 
matter). Others as p-coumaric and ferulic acids were present 

as minors. Phenolics present in potato peels as quantified by 
UPLC–ESI-MS were summarized in Table 1 [62]. However, 
potato peel extracts obtained from a local potato chip manu-
facturer (Egypt) had 1.08 to 2.91 mg gallic acid equivalent/g 
dry matter as total phenolic content, where total flavonoids 
were 0.51–0.96 mg quercitin equivalent/g dry matter [63].

Mori and coworkers investigated a red potato cultivar 
Kintoki-Imo and other colored cultivars grown in Hok-
kaido, Japan, for their anthocyanins using DAD-HPLC and 
ESI-TOF/MS. The results revealed that pelargonidin 3-ruti-
noside, 5-glucoside (7%), peonidin 3-rutinoside 5-gluco-
side (6%), petunidin 3-p-coumaroylrutinoside, 5-glucoside 
(11%), peonidin 3-caffeoylrutinoside 5-glucoside (8%), 
pelargonidin 3-p-coumaroylrutinoside 5-glucoside (23%), 
peonidin 3-p-coumaroylrutinoside 5-glucoside (12%), 
pelargonidin 3-feruloylrutinoside, 5-glucoside (22%), and 
peonidin feruloylrutinoside, 5-glucoside (12%). The con-
tent of anthocyanins was 2–816 mg/100 g flesh tubers [64]. 
Another study investigated the extraction of eight pheno-
lics (gallic, chlorogenic, caffeic, protocatechuic, syringic, 
p-hydroxyl benzoic, ferulic, and coumaric acids) from potato 
peel varieties. Where, the bound phenolics were the most 
abundant in Innovator and Russet varieties. Free and esteri-
fied compounds were the most abundant in Purple and Yel-
low varieties [65]. Additionally, the content of phenolics of 
potato peel using five different solvents (methanol, water, 
acetone, ethanol, and hexane) and two methods (solvent 
and ultrasound-assisted) were estimated spectrometrically 
using the Folin-Ciocalteu method. Where, the total pheno-
lics in the different of potato peel extracts were as 155.6 
to 593.3 μg gallic acid equivalent/g dry matter [66]. These 
results also supported the potent antioxidant of the extracts. 
Furthermore, potato peels (Wulanchabumeng, Inner Mon-
golia, China), were investigated and quinic, chlorogenic, 
caffeic acids, and methyl caffeate were isolated where the 
potato peels had a higher amount of phenolics than the flesh. 
Quinic acid was present, as quantified by UPLC–ESIMS, in 
the range of 0.63–0.71 mg/g dry weight [67].

Albishi and co-workers investigated the peels of pota-
toes of four common varieties (Yellow, Purple, Innovator, 
and Russet), obtained from local markets in Canada, where 
phenolic acids were the most abundant phenolics then 
anthocyanins analysed using ultrafast liquid chromatogra-
phy [68]. Chlorogenic, caffeic, p-coumaric and ferulic acids 
were the predominant components in the peels. Peels of the 
Purple-fleshed cultivar showed  the highest amount of free 
and esterified phenolics in all the four studied varieties, then 
Innovator potato peel, Russet potato peel, and Yellow potato 
peel. The phenolics were mainly present in the bound form 
in peels of the Innovator and Russet though the free and 
esterified phenolics were the main in the Purple and Yellow 
potatoes. The total anthocyanins, presented as mg cyani-
din-3-O- glucoside equivalents, in peels of Purple, Russet, 
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Yellow and Innovator varieties were reported as 6.84, 0.40, 
0.27 and 0.24 mg /100 g dry matter, respectively [68]. In 
the purple cultivar, anthocyanins were almost present in the 
peel and the outer cortices of tubers, where the content of 
anthocyanins in the peel 10.69 times more than in the flesh. 
Neochlorogenic, caffeic, chlorogenic acids were detected at 
levels of 0.48, 7.76, and 1.33 mg/100 g dry matter, respec-
tively in peels of the Russet cultivar (Canada), where caffeic 
acid was the most abundant phenolic acid using an Agilent 
1200 series HPLC [69]. The samples were studied using 
ultrafast liquid chromatography mass spectrometry tech-
nique. These compounds were responsible for their antioxi-
dant and antibacterial activities.

The total phenolics were estimated using the Folin-
Ciocalteu method and gallic acid as a standard, which was 
expressed as 3.2–10.3 mg gallic acid equivalent/100 g dry 
matter. Ferulic and chlorogenic acids were the two most 
abundant phenolic acids detected in the peels of Agria vari-
ety (Spain) ethanolic extract [23]. Folin–Ciocalteu method 
was used to estimate the quantity of phenolics in potato peel 
extracts. Where, total phenolics of 6.74 and 20.21 mg gallic 
acid equivalent/ g dry matter was stated in the tested extract 
using solid–liquid batch and pressurized liquid extractions, 
respectively [70].

Chlorogenic, neochlorogenic, cryptochlorogenic, coffeic, 
ferulic, and p-coumaric acids in one yellow-fleshed potato 
variety and four blue-fleshed potatoes varieties (Valfi, Blaue 
Elise, Bore Volley and Blue Congo), where coffeic acid was 
the major detected component [71].

Potatoes peels were fractionated using hexane, ethyl 
acetate followed by methanol. Where, the ethyl acetate 
fractions had the highest phenolics. Total phenolic contents 
was estimated using Folin-Ciocalteu method of 83.2 and 
44.14 mg gallic acid equivalent/g dry matter, respectively 
were estimated in the ethyl acetate fractions of young and 
mature [72]. High content of phenolics in Red-coloured vari-
eties (Siècle and Purple Majesty) of potato were reported 
as compared to the other varieties (Yukon Gold, Dakota 
pearl, Vivaldi, FL 1533). Total phenolic acid content in dry 
peels was 0.863 mg gallic acid equivalent/100 g. The total 
content of flavonoids in dry peels was 2.75 mg catechin 
equivalent/100 g dry matter. The flavonoids identified in 
the extract of dry potato peels were quercetin (0.42/100 g 
dry matter), myricetin (0.29/100 g dry matter), apigenin 
(0.19/100 g dry matter), catechin (0.09/100 g dry matter), 
puerarin (0.08/100 g dry matter), fisetin (0.05/100 g dry mat-
ter), hesperidin (0.03/100 g dry matter), naringin (0.02/100 g 
dry matter) and rutin (0.02/100 g dry matter), quantified 
using HPLC/DAD [73].

Yin et al. investigated the peel and flesh of ten colored 
potato varieties from China (Purple Cloud No. 1, Red Cloud 
No. 1, Yunnan Potato 303, Yunnan Potato 603, S03-2677, 
S03-2685, S03-2796, S05-603, S06-277 and S06-1693) [74]. 

The total anthocyanin content in peel was 15.34 times more 
than of its respective flesh using HPLC analysis. Addition-
ally, the total phenolics were 7.28 times more than in peels 
as compared to their respective flesh. Types and contents of 
anthocyanidins in the peel were higher than in the respective 
flesh, but with the same dominant compounds. Six antho-
cyanins were detected: delphinidin, peonidin, petunidin, 
malvidin, cyanidin, and pelargonidin.

It was also reported that gallic, chlorogenic, caffeic, and 
ferulic acids with two flavonoids (rutin and quercetin) were 
the major phenolics detected by HPLC in potato peels of 
the Fianna variety, obtained from Yaqui valley, Sonora, 
México. Where, chlorogenic, caffeic, and gallic acids 
were the predominant compounds. The total flavonoids 
were 1.016–3.310 mg quercetin equivalent/g dry matter 
and the total phenolics were 4.160–14.031 mg gallic acid 
equivalent/g dry matter [75].

Akyol and coauthors reported that chlorogenic acid was 
the main phenolic component in potato peels and constitutes 
up to 90% of the total phenolics, in the form of 3 isomers, 
chlorogenic acid (5-O-caffeoylquinic acid), neochlorogenic 
acid (3-O-caffeoylquinic acid), and cryptochlorogenic acid 
(4-O-caffeoylquinic acid) [76]. Chlorogenic (50.31%), gal-
lic (41.67%), protocatechuic (7.815%), and caffeic acids 
(0.21%) were reported as the major phenolic acids detected 
in several works. Where, ferulic acid, vanillic acid, and 
salicylic acids were present in traces. Also, they reported 
that the flavonoids detected in the potato skin are quercetin, 
naringenin, catechin, and epicatechin. In another study, the 
authors investigated the peels of six potato varieties from 
organic and non-organic commercial gold, Russet and Red 
potatoes, where they detected the presence of three phenolic 
acids as shown in Table 1. Chlorogenic acid was in the range 
of 1094–7810 μg/g dry matter in peels of six potato varieties. 
Total phenolics and flavonoids, determined by colorimetry 
methods, were in the range 11.0–34.4 and 7.8–29.7 mg/g dry 
matter, respectively [77].

Phenolic compounds of selected colored potato varie-
ties were investigated by HPLC–DAD for their composi-
tion and concentration. Among the identified phenolics; 
4-aminobenzoic acid, neochlorogenic acid, chlorogenic 
acid, p-hydroxybenzoic acid, cryptochlorogenic acid, fraxin, 
daphnetin, caffeic acid, vanillic acid, 2,4-dihydroxy-benzoic 
acid, quercetin 3,4-rutinoside, p-coumaric acid, coniferyl 
alcohol, vanillin, rutin, quercetin 3-glucoside, ferulic acid, 
scopoletin, sinapic acid, kaempferol 3-rutinoside, isorham-
netin 3-rutinoside, 1,5-dicaffeoylquinic acid, kaempferol 
3-glucoside, quercetin 3-rhamnoside, isorhamnetin 3-glu-
coside, coniferyl aldehyde, dihydrokaempferol, phlorizin, 
luteolin, cinnamic acid, and kaempferol. Where, caffeic acid, 
coniferyl alcohol, coniferyl aldehyde, vanillin, vanillic acid, 
ferulic acid and p-coumaric acid were present in tuber peel 
and rarely or not detected in flesh [78]. Caffeic acid and 
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chlorogenic acid isomers, were present as the main while 
quercetin derivatives as well as cinnamic acid were present 
as minors in in all samples. Where, remaining metabolites 
showed different specificities. LC/UV/MS analysis was used 
in detection of anthocyanin and polyphenol profiles of 57 
potatoes cultivars, where the red tuber tissue has mainly 
pelargonidin derivatives, where blue/purple tuber tissue has 
almost derivatives of malvidin and petunidin [78].

Moreover, Andean potato varieties were investigated, 
where the quantity of all phenolics were higher in peels than 
in flesh. Phenolic acids were the main class, followed by 
anthocyanins and flavan-3-ols. Chlorogenic acid, and caf-
feic acid were the major phenolic acids, where catechin and 
epicatechin were the major flavan-3-ols and delphinidin, 
cyanidin, petunidin, pelargonidin, peonidin and malvidin 
were the major anthocyanidins quantified by HPLC–DAD. 
Major anthocyanidins found in red fleshed/skinned tubers 
were pelargonidin, followed by peonidin, whereas purple 
potatoes contained petunidin followed by malvidin [79]. 
The Red and Purple colors of potatoes’ peels are originated 
from anthocyanins. The most common anthocyanidins were 
shown in Table 1 [80].

Chlorogenic acid and its isomers were the major phe-
nolics determined by HPLC-DAD-ESI-MS analysis in five 
potato varieties (Bintje, Challenger, Daisy, Innovator and 
Fontane) from Italy [81]. Elkahoui et al. investigated the 
content of the phenolic acids (chlorogenic and caffeic acids) 
of organic and non-organic potato peels of the Russet variety, 
and found that there was a wide range of these compounds 
in the tested samples: a nearly sixfold difference in the chlo-
rogenic acid, where caffeic acid levels were more consistent 
between samples [82]. The highest contents in peels from the 
non-organic of the Russet variety. Additionally, Javed and 
coworkers reported the presence of several phenolic acids in 
the potato peel extract as caffeic acid (278.0–296.0 mg/100 g 
dry matter), protocatechuic acid (216.0–256.0 mg/100 g 
dry matter), gallic acid (58.6–63.0 mg/100 g dry matter), 
vanillic acid (43.0–48.0 mg/100 g dry matter), chlorogenic 
acid (753.0–821.3 mg/100 g dry matter), p-coumaric acid 
(41.8–45.6 mg/100 g dry matter), and p-hydroxybenzoic 
acid (82.0–87.0 mg/100 g dry matter) [83]. The most abun-
dant phenolic acid reported in peels is chlorogenic acid 
(5-O-caffeoylquinic acid), in addition to other isomers 
(3,4-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid, and 
4,5-dicaffeoylquinic acid). Chlorogenic acid was of about 
2115 μg/g dry weight in peel, decreasing in the neigh-
boring tissues (cortex) to 276 μg/g dry weight. Catechin, 
hydroxycinnamic and hydroxybenzoic acids are present 
only in trace, but caffeic acid is present in good quantity 
[84]. Potato peel extracts, obtained from “Roquette Frères” 
Company, Lestrem, France, were analyzed using HPLC for 
their phenolics profile, with the total phenolics that was 
assessed using spectrophotometric analysis. The greatest 

amount of phenolic acid was 5-caffeoylquinic acid iso-
mers, mainly the 5-caffeoylquinic acid or chlorogenic acid 
(870 ± 39.7 mg/100 g dry matter) [85].

Red- and purple-skinned potato tubers of ten genotypes 
(Red-skinned: Rosemary, Red Emmalie, Red Cardinal; 
Purple-skinned: Purple, Violetta, Kefermarkter Blaue, 
Salad Blue, Blaue aus Finnland, UACH 0917 and Shetland 
Black) from five different countries of origin (Chile, Ger-
many, Austria, United Kingdom, and Finland) were inves-
tigated. 4-O-Caffeoylquinic acid, caffeic acid, salvianolic 
acid, kaempferol-O-hexoside-deoxyhexoside-hexoside, 
kaempferol-O-deoxyhexoside-hexoside, bis(dihydrocaffeoyl)
spermidine, and kaempferol-3-O-rutinoside were identified 
as non-anthocyanin phenolics from the studied peels. Caffeic 
and caffeoylquinic acid were detected as the majors in all 
the samples, also O-glycosylated flavonoid derivatives and 
polyamine derivatives were present [86].

Glycoalkaloids and Amides

Potatoes contain toxic glycoalkaloids, which protect the 
tuber from pathogens, and insects, but can cause diarrhea, 
nausea, abdominal cramping, or vomiting to consumers. 
Removing the sprouts and peeling of the skin before pro-
cessing eliminates mostly the glycoalkaloids [11]. It was 
reported that that 95% of potato glycoalkaloids consist of 
α-solanine and α-chaconine (Table 1) [82, 87, 88]. This was 
consistent with another report which showed that total con-
tents of α-solanine and α-chaconine were in range of 0.64 
and 0.3526 mg/100 g dry matter in flesh, peels, and whole 
potatoes [62].

Samples for measurement of glycoalkaloids were taken 
from of all 31 coloured cultivars, the analyses were confined 
to the most common reported two types of glycoalkaloids 
(α-solanine and α-chaconine), where results revealed that 
the highest level was found in skin samples (1.72 mg/100 g 
dry weight), while in samples taken from whole tubers 
(0.44 mg/100 g dry weight) and flesh (0.23 mg/100 g dry 
weight), the glycoalkaloid content was significantly lower 
than skin samples [59]. The genotypes concerned in this 
test series differed significantly from the skin. The high-
est amount of glycoalkaloids was found in Violettfleischige 
(3.68 mg/100 g dry weight), while the Blaue Utwill had the 
lowest value (0.63 mg/100 g dry weight). It was also shown 
that α-chaconine, α-solanine and solanidine accounted for 
1.70, 0.71 and 0.01 mg/100 g of potato peel dry weight, 
respectively [89]. In another study the authors isolated and 
characterized 2-hydroxy-3-phenyl-propionamide, and (cis-
N-feruloyloctopamine) as amides, with the two major gly-
coalkaloids in potato from the peels [67].

The main glycoalkaloids detected in the selected Paki-
stani potato cultivars were α-solanine and α-chaconine. 
They were 3 to 10 times greater in the peel than in the flesh 
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[77, 90]. In another study, the authors investigated the lev-
els of glycoalkaloids in potato peels which was as follow; 
α-chaconine (1.17 mg/100 g of potato peel dry weight), 
α-solanine (0.71 mg/100 g of potato peel dry weight), and 
solanidine (0.01 mg/100 g of potato peel dry weight) [69].

Further, Hossain et al. reported that the dried peels of 
Lady Claire showed the presence of α-solanine, α-chaconine, 
solanidine and demissidine at the levels of 597, 873, 374 
and 75 µg/g dried potato peel, respectively using pressurized 
liquid extraction and in lower amounts in solid liquid extrac-
tion [91]. Additionally, Friedman and coworkers investigated 
the α-chaconine content ranged from 424 to 2830 mg/100 g 
dry matter and the content of α-solanine ranged from 215 
to 750 mg/100 g dry matter in peels of six potatoes cul-
tivars using HPLC analysis [77]. The peels derived from 
the organic-grown gold and Russet varieties had a higher 
glycoalkaloids contents estimated as 3580 and 1550 μg/g 
dry weight, respectively where to the non-organic samples 
had glycoalkaloids contents of 920 and 639 μg/g dry weight, 
respectively. Organic samples of the red one had lower con-
tent of glycoalkaloids (850 μg/g dry weight) in compared to 
the conventionally grown ones (1709 μg/g dry weight). Also, 
Elkahoui et al. investigated the content of the glycoalkaloids 
α-chaconine and α-solanine on of organic and non-organic 
potato peels of the Russet variety, and found that there was 
a wide range of these compounds in the tested samples: a 
2 − threefold difference in the glycoalkaloid levels, where the 
contents in peels from the conventionally grown red variety 
were the highest (2180 μg/g dry weight) [82].

Organosulfur Compounds

The sulfur compounds in onion come from the non-volatile 
precursor sulphuric compounds namely aliin or S-alk(en)yl-
L-cystein sulfoxides (ACSOs). Many compounds were iden-
tified which are responsible for the aroma of onion namely 
metiin, propiin, and izoaliin. Izoaliin are the most dominant 
with about 80% of organosulfur compounds in onion, and 
responsible for onion aroma [92–94]. ACSOs are the pre-
cursors for flavoring and aroma of onion, where the enzyme 
namely alliinase with responsible for their cleavage. Trans-
(+)-S-1-propenyl-L-cysteine sulphoxide found as major 
constituent and has a lachrymatory effects, ( +)-S-methyl-L-
cysteine sulphoxide and ( +)-S-propyl-L-cysteine sulphoxide 
(Table 1), detected as minors [95, 96].

Two cultivars, cvs Recas and Figueres, that are com-
mon in commercial production in Spain, were investigated 
for the total sulphur content using an elemental analyzer. 
The highest content was in the inner scales and the low-
est was present in brown skin. Total ACSOs were 19% of 
total content in onion and of about 15–35% in onion wastes, 
was there higher in the inner scales and brown skin. Two 
ACSOc were identified as (+)-S-methyl-cysteine sulphoxide 

and trans-(+)-S-1-propenyl-L-cysteine sulphoxide. The latter 
was the main flavor precursor in the whole bulb and onion 
wastes, of about 52–71% of total precursors. Alliinase 
cleaved ACSOs into 1-propenylsulfenic acid, ammonia, and 
pyruvate [30]. Additionally, Sharma et al. reported that the 
inner scales of onion were an important source of ACSOs. 
Also they detected low molecular weight sulfur compounds 
in onions as thiol compounds, where they were reports as 
very active components in several health problems [13].

Other Miscellaneous Phytonutrients

Six onion cultivars: five were traditional cultivars from 
Tenerife (Guayonje, San Juan de la Rambla, Carrizal Alto, 
Carrizal Bajo and Masca) and the other was a foreign cul-
tivar (Texas Early Grano 502) were selected for screening. 
Phosphorus, potassium, calcium, sodium, selenium, magne-
sium, iron, copper, zinc, and manganese were determined. 
Onion wastes had higher contents of calcium, magnesium, 
iron, sodium, copper, and selenium than those found in other 
studies for onion bulbs. Whereas potassium, manganese and 
zinc contents were lower. Consumption of 100 g accounts 
for 5.6% of the recommended intake for phosphorus (for 
adults). Additionally, manganese, magnesium, and potas-
sium intake for a serving of onions accounts for 2–5% of 
the recommended dietary allowances of these elements for 
adults. The Na/K ratios were very low (0.05–0.09), which is 
remarkable for cardiovascular diseases prevention or treat-
ment [97]. Further, brown skin of onion had a high content 
of calcium, and top–bottom had high content of magnesium, 
iron, zinc and manganese. Proteins increased towards inner 
scales and growing apex. Magnesium, iron, zinc, and man-
ganese was found in top–bottom in highest concentration, as 
this waste encompassed the plant roots, where the nutrient 
uptake happens, where the highest amounts of potassium 
and selenium were in the inner scales, but selenium was high 
similar to inner scales in brown skin. Similarly, calcium was 
found in brown skin in high amounts [30]. Brown skin had 
a high concentration of calcium, where top–bottom were 
reported to have high concentration of minerals.

Additionally, the proximate analysis of Yellow vari-
ant of onion bulbs from Nigeria and showed that protein 
(8.76  mg/100  g dry matter), ash (11.46  mg/100  g dry 
matter), carbohydrate (66.12 mg/100 g dry matter), fat 
(15.71 mg/100 g dry matter) and fiber (26.84 mg/100 g 
dry matter). Protein and carbohydrate were concentrated in 
top–bottom part, fats, and fibers in outer scale part while 
moisture content was in top–bottom part. The outer scale 
showed high level of calcium (3.05 mg/100 g dry matter) 
then the onion bulb (2.98 mg/100 g dry matter) and in the 
top–bottom part (2.08 mg/100 g dry matter). GC/MS of 
oil revealed that the outer scale with the following profile; 
linoleic acid (52.87%), where 12 fatty acids were totally 
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identified of about 21.42% was saturated and 76.79% was 
unsaturated; C12:0 (0.94%), C14:0 (1.28%), C16:0 (9.80%), 
C16:1 (2.84%), C18:0 (8.81%), C18:1 (17.57%), C18:2 
(52.87%), C18:3 (2.88%), C20:0 (0.59%), C22:0 (1.23%), 
C22:1 (0.63%), C24:0 (0.54%) [98]. further, onion skins 
of a Red onion variety, from an Egyptian local market, 
were analyzed for its mineral contents revealing the pres-
ence of calcium (39.251 mg/ 100 g dry matter), potassium 
(4.365 mg/100 g dry matter), magnesium (1.495 mg/100 g 
dry matter), manganese (1.077 mg/100 g dry matter) with 
iron (0.818 mg/100 g dry matter); the high amounts of iron 
and zinc was in top–bottom waste as this organ contain the 
plant roots where the nutrient uptake happens [34].

Wastes showed a high mineral content, as most of it con-
tains top–bottom and plant roots, where nutrient uptake hap-
pens. Distribution of them is related to the mobility of the 
minerals, the low mobility elements (iron, calcium and mag-
nesium) were concentrated predominantly in the outer sec-
tions of the bulb. In contrast, high mobility elements showed 
no remarkable difference found. Magnesium, iron, zinc and 
manganese are found in top–bottom in high concentration, 
where the highest concentrations of potassium and selenium 
are found in inner scales. Likewise, the high amount of cal-
cium was in the brown skin. They had many transition met-
als (e.g., manganese, iron, nickel, titanium, and chromium). 
These elements are classified as a food ingredient to enhance 
digestion and metabolic activity in our body. Chromium was 
detected only in the top–bottom waste, nickel was detected 
only in the outer scale, and the manganese content was high 
for top–bottom waste [13]. In the same previous study, the 
authors documented that onion showed both saturated and 
unsaturated fatty acids in its chemical profile. The saturated 
fatty acids were great in the onion bulb, where saturated 
fatty acids were main in the top–bottom waste. The unsatu-
rated fatty acids were detected in higher amounts in the outer 
scales as 76.79% of the total content. The top and bottom 
had the highest percentage of oleic acid, but the outer scale 
had the lowest. Oleic acid (omega 9) is one of the impor-
tant fatty acids in onion oil. Linoleic acid and linolenic acid 
were detected in the onion oil. The outer scale which was 
unused had 52.87% of linoleic acid (omega 6) and so it is an 
important dietary supplement [13]. In another study, onion 
wastes were found rich in crude fiber, protein, sugars, fats, 
and minerals. Calcium, potassium, magnesium, zinc, and 
manganese were found to satisfy the recommended dietary 
intake of adults. They showed a good percentage of unsatu-
rated fatty acids as oleic and linoleic acids. Glucose was 
the most abundant sugar followed by fructose. This work 
highlighted the onion waste as a potential source for many 
food applications [99].

Peels were found to contain notable amounts of unsatu-
rated fatty acids such as omega-6 and omega-3 fatty acids, 
which is rarely found in plants. Also, they are highly 

reported for their protein content, where the most common 
protein contained in potato skins is known as patatin [100]. 
Peels of potato (Egypt) contained 65.5 μg/100 g dry matter 
moisture, 84.6 μg/100 g dry matter crude fat, 138.5 μg/100 g 
dry matter crude protein, 84.8 μg/100 g dry matter ash, 
129.8 μg/100 g dry matter crude fiber and 562.3 μg 100 g dry 
matter carbohydrate [63]. The peels of the studied varieties 
had similar fatty acid composition; myristoleate, palmitate, 
palmitoleate, stearate, oleate, linoleate, linolenate, and ara-
chidate, with higher amounts of polyunsaturated fatty acids. 
Differences of their proportions were influenced by the color 
of the peels. The brown peels had myristoleic and arachidic 
acids, 2.3–4.2% and 7.0–7.4%, respectively, whereas these 
were detected only in trace quantities in the red ones. Where, 
the red peels contained higher amounts of oleic and linoleic 
acids and less of linolenic acid than the brown ones [52]. 
Chemical composition of potato peel extract from Greece 
was as follow total carbohydrates (68.7% of dry weight), 
soluble sugar (1% of dry weight), reducing sugar (0.6% of 
dry weight) and starch (52% of dry weight), protein (8% of 
dry weight), fats (2.6% of dry weight). So, potato peel waste 
had a high starch content [101]. Ascorbic acid or vitamin C 
in potato peels was detected (1.44 ± 0.5 mg/g dry weight) in 
the Russet Burbank Canadian cultivar [102].

An omega-6 fatty acid [9,10,11-trihydroxy-12(Z)-octa-
decenoic acid] and omega-3 fatty acid [9,10,11-trihydroxy-
12(Z), 15(Z)-octadecadienoic acid] were isolated and char-
acterized from the potato peels [67]. Previous work also 
reported 17 fatty acids in potato peel extract, where linoleic 
(39%), palmitic (18%), and linolenic (16%) acids were the 
main with minor lauric, myristic, pentadecanoic, heptadece-
noic, stearic, eicosanoic, heneicosanoic, docosanoic, tricosa-
noic, tetracosanoic, hexacosanoic, montanic, nonacosylic, 
and melissic acids [103]. Moreover, Javed and coworkers 
reported the presence of non-starch polysaccharide (30%), 
starch (25%), acid-soluble and acid-insoluble lignin (20%), 
ash (6%), protein (18%), and lipids (1%) on dry basis in 
potato peels. They also reported that the potato peels as a 
potential source of dietary fibres [83]. Previous reports also 
highlighted the importance of potato peels as a rich source 
of dietary fibres, with several benefits to human health [104, 
105].

Choi et al. investigated the nutritional protein compo-
sition of potato peels, where they reported that the potato 
peels were important macronutrient source [106]. The 
result revealed that the total crude protein concentration of 
9.52–10.58 g/100 g dry weight, an essential amino acids 
content of 429–666 mg/100 g dry weight, a total free amino 
acid level of 1383–2077 mg/100 g dry weight, and aspara-
gine in level of 90.4–115.8 mg/g dry weight. Total dietary 
fibre content of potato peels from the Lady Claire variety 
was reported to be 51% [107] and in another study [82] were 
reported to be 21.4% and 22.39% dry weight of organic and 
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non-organic of the Russet variety, respectively. The presence 
of calcium (1%), iron (6%), magnesium (6%), manganese 
(7%), phosphorus (8%), potassium (9%), and zinc (3%) as 
minerals in addition to some vitamins: B1, B2, B3, B5, B6, 
C, K, and folate (B9) together carbohydrate, dietary fibres, 
starches, fats, and proteins were found mostly in the thick 
periderm of the potato skin [108]. The levels of minerals 
were present in greater amounts in the skin than in the flesh 
of the tuber. Additionally, this report also highlighted the 
great importance of peels for their content of dietary fiber. 
Approximately 50% of potato peels (w/w) is dietary fibers 
such as cellulose, hemicelluloses, lignins, pectins, and gums.

Dietary fiber is a major element of foods that has just got 
attention for its health advantages including polysaccharides, 
oligosaccharides, lignin, and associated plant substances. 
The ratio between soluble and insoluble dietary fiber is 
highly important for health conditions and technological 
features; 30–50% of soluble dietary fiber and 70–50% of 
insoluble dietary fiber is considered a good-balanced pro-
portion [109, 110]. The insoluble and soluble dietary fiber 
contents in onion by-products depend on the variety; Recas, 
Paste and Bagasse were the onion by-products with higher 
in the content. Onion Bagasse could be considered a good 
source of insoluble fiber. The ratio of soluble dietary fiber 
to insoluble dietary fiber was 1:3 in Purée, Bagasse, and 
Figueres, which was considered a good ratio supplying a 
reasonable amount to about 30% of soluble dietary fiber, 
so onion by-products could be utilized as a good source of 
soluble dietary fiber [111–113].

Insoluble and soluble dietary fibers were exposed to acid 
hydrolysis, uronic acids, neutral sugars, and Klason lignin 
were detected and quantified. Brown skin showed total dietary 
fiber content (65.8%) on a dry weigh basis, then top (48.5%) 
and bottom (38.6%), insoluble dietary fibers were the main 
fraction found. The soluble to insoluble ratio reduced from 
inner to outer tissues. Brown skin and outer leaves by-prod-
ucts seem to be the important sources of dietary fiber used in 
natural product supplements. Cellulose and pectic polysac-
charides were the major parts of onion dietary fiber in all tis-
sues, with some differences. Uronic acids/neutral sugars ratio 
showed slight increases from inner to outer tissues, because 
of the galactan side chain has a dietary fiber solubilization 
responsibility [112]. Additionally, onions contain soluble 
and insoluble dietary fiber, and the ratio of soluble/insolu-
ble dietary fiber is better than other vegetables. Brown skin 
has the highest content of dietary fiber, followed by top–bot-
tom. Of about 65% or more of the dry weight could be in 
the form of non-structural carbohydrates including glucose, 
fructo-oligosaccharides, fructose, and sucrose [112]. Moreo-
ver, onion wastes soluble dietary fibers were mainly glucose, 
uronic acids, and galactose accounting for more than 70% 
of the total sugars, where xylose, mannose and arabinose 
occurred in lesser quantities. Cellulose and polyuronides 

were the main polysaccharides of onion dietary fibers. They 
also contain non-structural carbohydrates like fructans and 
fructooligosaccharides, and flavour compounds [112, 113].

Brown skin of two onions cultivars (cv. Figueres and cv. 
Recas) had the highest amount of total dietary fiber, then 
top–bottom suggesting that a decrease in it from outer bulb 
to the inner. So, brown skin and top–bottom could be pos-
sibly used as functional components rich in dietary fiber, 
mostly in insoluble fraction. Outer scales could be used as 
source of dietary fiber. Though, inner scales with a potential 
source of fructans and alk(en)yl cystein sulphoxides [111]. 
Glucose was the main non soluble carbohydrates component 
of whole onion and the minor was fructans [30]. Further, 
Onion skin powder had significant content of dietary fiber 
(7.78%), moisture content (8.08%), ash content (5.93%), 
crude fats (1.08%), protein content (3.06%), and total carbo-
hydrates (82.15%). Onion skins also showed a considerable 
amount of dietary fiber, suggested the possibility of them as 
a potential functional food [34]. Onion peels showed con-
tents of carbohydrate (88.56%); protein (0.88%), ash (0.39%) 
and crude fiber (0.15%), highlighting the peels as a good 
source of carbohydrates [114]. Onion skin powder showed 
a lower protein content (2.58–3.06%), with lower crude fat 
content (0.71–0.77%) and high content of total dietary fiber 
(7.78–62.09%) of about 54.71% were insoluble with 7.38% 
soluble dietary fibers, and ash (5.50–5.93%) [115].

Extraction Optimization

Extraction is the process of metabolites recovery from plant 
tissues in solvents. It acts through affecting the cell wall 
integrity, and then, disruption letting the solvents capture the 
plant cell metabolites. Since solubility of plant products is a 
pre-requisite for the extraction process, the choice of the sol-
vent polarity is critical issue [119, 120]. In addition, differ-
ent parameters, including temperature, time, solvent-to-solid 
ratio, costs, safety, energy input and others are involved. So, 
optimization of these factors should be conducted with aid 
of statistical calculations, including factorial design and 
response surface Box-Behnken design, to guarantee effec-
tive extraction and improved yields of desired metabolites 
[40, 119, 121].

Extraction methods can be classified into conventional 
solvent extraction and non-conventional methods [122]. 
Despite of the common use of solid/liquid extraction 
(SLE) methods for the recovery of bioactive compounds, 
including polyphenols from potato and onion peels, mod-
ern green technologies have been preferred nowadays, 
including microwave- and ultrasound-assisted extraction 
[123]. The mechanisms behind the different extraction 
mechanisms were discussed extensively and how they can 
disrupt the cell walls in previous literature [124]. Table 2 
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Table 2  Summary of used extraction techniques and the effect on the obtained yields from potato and onion biowastes

Potato by-products

Extraction parameters Affected phytoconstituents Ref

1.1.Conventional solvent extraction
--Solvent: ethanol (71.2% v/v for phenolic compounds and 38.6% 

for flavonoids),
--Time: 34 min., and
--Temperature: 89.9 °C

phenolic, i.e., chlorogenic and ferulic acids, and flavonoid com-
pounds

[23]

--Solvent: methanol,
--Time: overnight in a shaker, and
--Temperature: room temperature 

phenolic compounds including flavonoids (2.91 mg gallic acid 
equivalent/g dry weight)

[63]

--Solvent: water,
--Time: 10,000 × g for 10 min and then 5 min. with deionized water
--Temperature: cold (5 °C), and
--Sample to solvent ratio: 0.5 g/10 mL

phenolic acids (86.3 mg/100 g freeze dried sample) and flavonoids 
(27.5 mg/100 g freeze dried sample)

[117]

--Solvent: methanol:water (80%v/v),
--Temperature: 40 °C,
--Time: 30 min, and
--Sample to solvent ratio: 1:10

phenolic compounds, i.e., chlorogenic acids (4.78 mg chlorogenic 
acid/g)

[85]

--Solvent: ethanol 50%v/v)/acetic acid (0.5% v/v), and
--Time: 1 h

glycoalkaloids, i.e., solanidine, α-solanine, and α-chaconine [126]

--Solvent: methanol under reflux then partitioned with EtOAc–H2O unsaturated fatty acids, amides, phenolic compounds, and glycoal-
kaloids

[67]

--Solvent: ethanol
--Time: overnight,
--Temperature: room temperature, and
--Sample:solvent ratio: 1:10

Phenolic acids, i.e., caffeic, chlorogenic, and neochlorogenic acids [127]

--Solvent: ethanol (96%v/v),
--Sample:solvent ratio: 1:10,
--Temperature: 5 °C, and
--Time: overnight

Phenolic compounds (70.8 mg of catechin equivalents/100 g of 
potato peel)

[128]

--Aqueous extraction,
--Solvent:sample ratio: 1:20

phenolic acids, i.e., chlorogenic, gallic, caffeic, and protocatechuic 
acids

[129]

2.2.Non-conventional green methods
a.a.Ultrasound-assisted extraction
--Solvent: ethanol/water 55/45 (% v/v),
--Time: 35 min,
--Temperature 35 °C, and
--Sample to solvent ratio: 1:10

phenolic compounds, i.e., chlorogenic acid accounted for a 
49.3–61% of the total phenolics

[81]

--Solvent: methanol,
--Time: 17 min,
--Frequency: 20 kHz, and
--Sample: solvent ratio: 1:10

steroidal alkaloids (1102 μg/g dried peel), i.e., α-solanine 
(273 μg/g), α-chaconine (542 μg/g), solanidine (231 μg/g), and 
demissidine (55 μg/g)

[130]

--Solvent: water,
--Temperature: 25 °C,
--Frequency: 40 Hz,
--Power: 49.5 W,
--Liquid/solid ratio: 200:10, and
--Time: 30 min

Total phenolic content 2.12 ± 0.22 mg GAE/g [131]

b.b.Microwave-assisted extraction
--Solvent: methanol (67.33%v/v),
--Time: 15 min, and
--Microwave power level: 14.67%

maximum phenolics content (3.94 mg/g dry weight (dw)), i.e., 
ferulic acid, caffeic acid, and chlorogenic acid

[102]

c.c.Pressurized liquid extraction
--Solvent: 89% methanol, and
--Temperature: 80 °C

steroidal alkaloids (1.92 mg/g dried peels), i.e., α-solanine, 
α-chaconine, solanidine, and demissidine

[91]
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Table 2  (continued)

Potato by-products

Extraction parameters Affected phytoconstituents Ref

--Solvent: ethanol in water acidified to pH 2.6,
--Pressure: 100 bar, and
--Temperature: 80 °C

anthocyanin [132]

d.d.Supercritical fluid extraction
--supercritical fluid extraction with pure  CO2 or with  CO2 and 

ethanol (5% v/v) as cosolvent
--Pressure: low pressure (100 bar), and
--Temperature: 65 °C

anthocyanin [132]

Onion by-products
1.1.Conventional extraction methods
--Solvent: ethanol (50%v/v),
--Solid:solvent ratio: 1:100,
--Temperature: 25 °C, and
--Time: 15 min

Flavonoid, i.e., quercetin (7.96 mg/g dry weight) [12]

--Solvent: mixture of ethanol (70%v/v) and 2 N hydrochloride acid,
--pH: 1.0
--Time: 24 h for maceration, 8 h for percolation, and 2 h for reflux 

and Soxhlet method, and
--Solid:liquid ratio: 1:10

Antioxidant content [133]

--Solvent: water,
--solvent:solid ratio: 1:50,
--pH: 6 with phosphate buffer,
--Temperature: 100 °C, and
--Time: 30 min

total polyphenol (34.7 mg/g) and quercetin (13.5 mg/g dry weight) [134]

--Solvent: ethanol (60%v/v),
--Temperature: 50 °C, and
--Time: 3 h

Quercetin (1 mg/10 mg dry weight) [135]

--Solvent: ethanol (80%v/v),
--Solid:solvent ratio: 1:1,
--Time: 48 h, and
--Temperature: 25 °C

4'-O-glucoside of quercetin (spiraeoside) (32.5 mg/g dry weight) [119]

--Solvent: methanol (80%v/v),
--Time: 48 h,
--Temperature: 30 °C, and
--Solid:solvent ratio: 1 g/5 mL
--and then partitioned with 80% methanol, 80% ethanol, diethyl 

ether, ethyl acetate, and n-butanol

Flavonols, i.e., quercetin-3,4′-O-diglucoside (1.6 mg/ g dry weight), 
quercetin-4′-O-monoglucoside (2.3), and quercetin (0.5)

- Total phenolic content:
methanol (415.3 mg GAE/g), ethanol (398.5 mg GAE/g) and ethyl 

acetate (305.9 mg GAE/g), n-butanol (115.6 mg GAE/g), diethyl 
ether (92.6 mg GAE/g) and water (30.5 mg GAE/g) extracts

- Total flavonoid content:
ethanol (120.6 QE/g), methanol (101.4 QE/g), ethyl acetate (98.2 

QE/g), n-butanol (50.2 QE/g), diethyl ether (35.8 QE/g) and water 
(10.6 QE/g)

[38]

--Solvent: methanol (80%v/v),
--Time: 48 h,
--Temperature: 25 °C, and
--Solid:solvent ratio: 50:1

Flavonols, i.e., quercetin-3,4'-O-diglucoside, quercetin-3-O-
glucoside, quercetin-4'-O-glucoside (spiraeoside), isorhamnetin-
4'-glucoside, quercetin glycoside, and quercetin

[44]

--Solvent: methanol:water:HCl (70:29.5:0.5 v/v/v),
--Temperature: 35 °C, and
--Time: 90 min

quercetin 4'-glucoside and quercetin 3,4'-diglucoside
- Total phenolics (52.7 mg GAE/g)
- Total flavonoids (43.1 mg QE/g)

[30]

--Solvent: ethanol:water,
--Temperature: 40 °C, and
--Time: 60 min

- Total flavonoids (25.64 ± 1.40 mg QE /g dry weight)
- Total anthocyanins (0.78 ± 0.01 mg cyanidin 3-glucoside /g dry 

weight)

[136]
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summarizes the applied extraction methods for both bio-
wastes and how could improve the yields of different 
phytoconstituents.

Biological Activities

Several natural products and extracts captured the atten-
tion of researchers for discovering new therapeutic agents, 

Table 2  (continued)

Potato by-products

Extraction parameters Affected phytoconstituents Ref

2.2.Non-conventional extraction methods
a.a.Ultrasound-assisted extraction
--Solvent: ethanol (59%v/v),
--Temperature: 49 °C,
--pH: 2,
--Frequency: 40 Hz,
--Power: 469 W,
--Liquid/solid ratio: 60:1, and
--Time: 35 min

Flavonoids, i.e., quercetin (11.1 mg/g dry weight) [137]

--Solvent: ethanol; water,
--Temperature: 40 °C,
--Frequency: 40 Hz,
--Power: 469 W,
--Liquid/solid ratio: 100:5, and
--Time: 120 min

- Total flavonoids (23.12 ± 0.52 mg QE /g dry weight)
Total anthocyanins (0.48 ± 0.02 mg cyanidin 3-glucoside /g dry 

weight)

[136]

b.b.Microwave-assisted extraction
--Solvent: ethanol (69.7%v/v),
--Time: 117 s, and
--Power: 700 W irradiates at 10 s interval times

Quercetin (4.75 mg/g dry weight) [138]

--Solvent: ethanol/water
--Time: 15 min, and
--Power: 250 W irradiates

- Total flavonoids (19.09 ± 0.45 mg QE /g dry weight)
- Total anthocyanins (0.55 ± 0.05 mg cyanidin 3-glucoside /g dry 

weight)

[136]

c.c.Subcritical water extraction
A semicontinuous extraction (2.5 mL/min; 105–180 °C; 5 MPa)
--Time: < 30 min, and
--Temperature: 145 °C

Flavonoids (27.4 mg/g dry weight), i.e., quercetin (15.4 mg/g) and 
quercetin-4′-glucoside (8.4 mg/g) accounting for the 90% of the 
total flavonoids identified

[139]

d.d.Deep eutectic solvent-based extraction
--Eutectic mixtures composed of choline chloride (ChCl) with 

hydrogen bond donor urea (1:2),
--Temperature: 60 °C,
--Time: 120 min, and
--Solid:solvent ratio: 1:50

Phenolic compounds (222.97 mg gallic acid equivalent (GAE)/g 
dry weight), Flavonoids, i.e., quercetin, kaempferol, and myricetin

[140]

--Eutectic mixtures composed of Glycerol/Trimethyl glycine (GA/
TMG), Glycolic Acid/L‐Proline (GA/L‐Pro) and p‐toluenesul-
fonic acid/benzyltrimethylammonium

--methanesulfonate (pTSA/BZA)
--Temperature: 70–80 °C,
--Time: 10 min to 3 h,
--Water dilutions: 0.1 to 5% w/w,
--Solid:solvent ratio: 2/1, 3/1 molar ratio, respectively

The better extraction method of polyphenols (quercetin) from 
vegetal matrixes; onion skin waste. The quercetin concentration in 
the samples were over 3 times higher than methanol using HPLC 
(5.84 μg/mL with methanol, 18.56 μg/mL with GA/L‐Pro and 
over 14 μg/mL for GA/TMG and pTSA/BZA) and more than 1.5 
times higher by the water/methanol mixture (10.83 μg/mL)

[43]

e.e.Microwave-assisted deep eutectic solvent extraction
--Solvent: ChCl:Urea:H2O,
--Microwave power: 100 W,
--Time: 15.03 min, and
--Liquid:solid ratio: 1:55

phenolic compounds (80.45 mg GAE/g dw) [141]

f.f.Others
--Enzymatic digestion of non-dietary fibers components dietary fiber and fructooligosaccharides (FOS) [30]
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but this requires extensive investigations for their biologi-
cal activity. Onion peel extract (OPE) and potato peel 
extract (PPE) demonstrated certain biological activity, 
which will be discussed below in details and summarized 
in Figs. 1 and 2. 

Antioxidant Activity

It is well known that excessive production of free radicals, 
reactive oxygen species (ROS), has an important role in 
the pathogenesis and progression of several diseases [141]. 
There are numerous published articles that have referred to 
the antioxidant potential of several natural products from dif-
ferent botanical parts and origins [142–145]. Several studies 
have revealed that Onion peel extract and Potato peel extract  
also have a substantial antioxidant activity [146–148].

The antioxidant activity of Onion peel extract has been 
assayed in vitro via 2,2-diphenyl-1-picrylhydrazyl (DPPH), 
thiobarbituric acid (TBA), and ferric thiocyanate (FTC) 
methods. Several lines of evidence have suggested a pow-
erful correlation between antioxidant activity and phenolic 
content of the natural product extracts [32, 149, 150]. Eth-
anol extraction of yellow OPE showed the highest DPPH 
scavenging activity compared to hot or subcritical water 
extraction. Lipid peroxidation inhibitory effect of ethanolic 
Onion peel extract was better than hot or subcritical aque-
ous extract. These findings could be explained by the high 

concentration of quercetin in the extracted peels by ethanol 
[151]. The antioxidant activity of most common flavanols; 
quercetin aglycone, quercetin 3,4'-diglucoside, and querce-
tin 4'-monoglucoside, in methanolic Onion peel extract was 
evaluated and found to be in the following descendant order: 
quercetin > quercetin diglucoside > quercetin monogluco-
side [36, 38]. Despite the fact that the antioxidant activity 
is absolutely linked to total phenolic content [42], yellow 

Fig. 1  Biological activity of onion peel extract and possible under-
lying mechanisms. SOD superoxide dismutase, CAT  catalase, GPx 
glutathione peroxidase, GSH glutathione, MDA malondialdehyde, 
TBARs thiobarbituric acid reactive substances, TNF-α tumor necrosis 
factor- α, HO-1 heme oxygenase-1, GSTs glutathione S-transferase, 
IL-6 interleukin 6, IL-1β interleukin 1beta, LDH lactate dehydroge-
nase, COX-2 cyclooxygenase-2, GLUT4 glucose transporters 4, Cdkn 

1a cyclin-dependent kinase Inhibitor 1a, AMPK AMP-activated pro-
tein kinase, CPT-1α carnitine palmitoyl transferase-1 α, PPAR γ per-
oxisome proliferator-activated receptor γ, C/EBP-α CCAAT/enhancer 
binding protein, FAS fatty acid synthase, ACC  acetyl-CoA carboxy-
lase, cAMP cyclic adenosine monophosphate, TXA2 thromboxane  A2, 
COX-1 cyclooxygenase-1, TXAS  XA2 synthase

Fig. 2  Biological activities of Potato Peels Extract (PPE)



1848 Waste and Biomass Valorization (2023) 14:1823–1858

1 3

Onion peel extract showed lower content of all identified fla-
vones but higher antioxidant activity than the corresponding 
red peel extract. A possible explanation for this might be that 
yellow onion variety has a higher amount of anthocyanin 
cyanidin-3-glucoside, which is a potent antioxidant charac-
terized owing to its hydroxyl group-rich structure [13, 152]. 
It is noteworthy that the antioxidant activity of the onion 
increased from the inner to the outer parts [30, 42, 117].

The protective effect of onion biowaste against oxidative 
stress and its molecular mechanism have been indicated in 
several studies [153, 154]. Onion skin extract protected Sac-
charomyces cerevisiae (yeast cells) from cadmium-induced 
oxidative stress through increasing the activity of antioxidant 
enzymes including superoxide dismutase (SOD), catalase 
(CAT), and glutathione peroxidase (GPx). Additionally, the 
level of malondialdehyde (MDA) was decreased, whereas 
the level of glutathione (GSH) was increased in the yeast 
cells homogenate [153]. 2-(3,4-dihydroxybenzoyl)-2,4,6-
trihydroxy-3(2H)-benzofuranone (BZF) is an oxidation-
induced quercetin metabolite in onion peels and found 
to protect Caco-2 human colon adenocarcinoma cell 
line against oxidative stress at unprecedentedly low nanomo-
lar concentrations [154, 155].

Regarding the pre-clinical in vivo studies, the antioxidant 
power of Onion peel extract has been also reported by some 
researchers. Supplementation with powdered dried or etha-
nolic extract of onion peel for three months improved the 
antioxidant status in aged rats as demonstrated by elevation 
of total plasma antioxidant status, decline of thiobarbituric 
acid reactive substances (TBARs) in hepatic tissues, and 
decreased level of 8-isoprrostane in brain tissues [156]. On 
the other hand, there was a clinical trial carried out by Kim 
and Yim to investigate the benefits of Onion peel extract  at 
a dose of 100 mg/day for three months in obese women to 
avoid chronic diseases linked to the oxidative stress [146].

The phenolic content of the lyophilized water extract of 
potato peels were measured to be 3.93 mg/g powder using 
Folin–Ciocalteu method. HPLC analysis of the extract 
showed that its major phenolics are caffeic acid, gallic acid, 
protocatechuic and chlorogenic acid. The antioxidant activ-
ity of the extract was evaluated using  FeSO4 and ascorbic 
acid induced-lipid peroxidation in rat RBCs and human 
RBC membranes. The extract showed significant protection 
in both types of cells at 2.5 mg/mL, and also significantly 
prevents the peroxide-induced morphological alterations in 
the erythrocytes studied by scanning electron microscopy. 
In addition, the extract significantly protected the membrane 
proteins of human RBCs against ferrous–ascorbate induced 
oxidative damage [60].

Further, the antioxidant capacity of the oligosaccha-
ride from potato peels variety spunta was evaluated using 
phosphomolybdate method, and it showed total antioxi-
dant activity of 87.66 ± 9.38 α-tocopherol (μmol/mL) at 

10 mg/mL. The oligosaccharide fraction also proved DPPH 
radical-scavenging capacity with  IC50 = 2.5 mg/mL [128, 
157], ferric reducing power (OD: 0.622 ± 0.032; concentra-
tion = 20 mg/mL) [128, 157], β-carotene bleaching inhibi-
tion activity of 45.335 ± 3.653% at 50 mg/mL [157], and 
also the ABTS radical scavenging activity of 14.835 ± 0.1% 
at 10 mg/mL [157].

Additionally, the extracts of potato peels of different 
varieties were assessed for the capacity to stop lipid peroxi-
dation of porcine brain tissues (TBARS assay), the extract 
from peels of Rosemary tubers was the potent one, while 
that of Salad Blue showed the lowest results [86]. Concern-
ing the haemolysis of sheep blood cells, the hydroethanolic 
extracts from the peels of Violetta and Purple showed the 
most prominent activity, as they had the lowest  IC50 values 
(16 µg/mL for both varieties), while Salad Blue peels also 
showed the lowest antioxidant activity  (IC50 = 294 μg/mL) 
[86]. Potato peels could also inhibit lipid peroxidation in 
rat liver homogenates and iron ion chelation [128]. Potato 
peels aqueous extract showed in vivo antioxidant activity 
in rats fed on 2% and 3% Potato peel extract which showed 
significant increase in liver glutathione and trolox equivalent 
antioxidant capacity [73].

Anti‑Inflammatory Activity

It has been demonstrated that Onion peel extract and their 
active constituents possessed promising anti- inflamma-
tory activities. Incubation of lipopolysaccharide-stimulated 
HT-29 human colon carcinoma cells with OPE induced 
down-regulation of gene expression of tumor necrosis 
factor-α (TNF-α), heme oxygenase-1 (HO-1), and glu-
tathione S-transferase (GSTs). These findings can be attrib-
uted to the contained active components such as epicatechin, 
morin, and p-coumaric acid [35]. Another study on RAW 
264.7 murine macrophage cell line elucidated the decreased 
production of inflammatory cytokines (IL-6, TNF-α, and IL-
1beta) by onion peel hot water extract [158]. For ear oedema 
in mice exposed to croton oil, onion peel hot water extract 
decreased the release of these inflammatory cytokines [158].

Ethyl acetate fraction of Onion peel extract showed profit-
able anti-inflammatory activity in L6 myoblast cells through 
inhibition of featured process of inflammation and protein 
denaturation [159]. Inflammatory cascade in tissue dam-
age embraces the release of leucocyte's proteinase and cell 
membrane damage. Synthesis of gold nano-bioconjugates 
with high concentration of ethyl acetate Onion peel extract 
has induced remarkable inhibition of proteinase and bovine 
serum albumin denaturation [159]. Despite these data, 
further in vitro and in vivo studies for the molecular anti-
inflammatory mechanism are still required.

The anti-inflammatory activity of the hydroethanolic 
extracts of the peels of potato different varieties was 



1849Waste and Biomass Valorization (2023) 14:1823–1858 

1 3

assessed by lipopolysaccharide (LPS)-induced nitric oxide 
(NO) production by mouse macrophages RAW 264.7. The 
extract showed significant inhibitory activity on the growth 
of RAW 264.7 mouse macrophages with  IC50 = 141 μg/mL 
[86]. Additionally, the in vivo anti-inflammatory properties 
of Potato peel extract were evaluated using carrageenan-
induced paw edema using diclofenac as the positive control. 
At doses of 100, 200, and 400 mg/kg, there was significantly 
decreases in the edema volume in male Wistar rats [160]. 
Moreover, Potato peel extract at a dose of 100 and 200 mg/
kg significantly (p < 0.05) decreased pain stimuli in male 
Wistar rats, compared to paracetamol as a standard drug 
using the hot plate test [160].

Cytotoxicity

It is well known that cancer is one of the predominant lead-
ing cause of death, with approximately 9.6 million deaths in 
2018 [161]. Extensive research have revealed the anticancer 
activity of many natural products including onion and potato 
biowastes [33, 86, 161, 162]. Twenty-four-hour incubation 
of HT-29 colorectal adenocarcinoma cells with different 
concentrations of Onion peel extract showed decrease in 
cell viability in a dose-dependent manner. At 250 µg/ mL 
Onion peel extract, most of HT-29 cells exhibited loss of the 
normal architecture of their nuclei and showed significant 
increase in the level of lactate dehydrogenase (LDH); indi-
cating damage of cell membrane and cell death [85].

A recent work has examined the anti-proliferative activity 
of red and yellow Onion peel extract on three cell lines [42]. 
This work proved that the anti-proliferative activity of red 
variety of Allium Cepa L. is better than that of yellow vari-
ety in two cancer cell lines; HCT116 human colon cancer 
and U2OS osteosarcoma. Quercetin glycosides and other 
bioactive constituents of the extracts contributed to this anti-
proliferative effect. Furthermore, investigators revealed that 
quercetin glycosides displayed reasonable activity on these 
three cancer cell lines in comparison with the red and yel-
low Onion peel extract. Quercetin mono-glucoside showed 
a 50% lower inhibitory concentration  (IC50) and better anti-
proliferative activity than quercetin di-glucoside [42].

Nile et al. examined the cytotoxicity of Onion peel 
extract and flavonol glucoside from the extract on ACHN 
human renal carcinoma, Panc1 human pancreatic carci-
noma, Calu 1 human non-small lung carcinoma, H460 
human non-cell lung carcinoma, with HCT116 colorec-
tal carcinoma and was found these bioactive molecules 
has a dose-dependent in  vitro cytotoxic effect [38]. 
Muoth et al. clarified that quercetin was the most potent 
cytotoxic flavonol in DLD-1 human colon cancer cells 
 (IC50 = 10.5 µM) compared to epicatechin and catechin 
 (IC50 = 415.3 µM) [163]. Inhibition of cyclooxygenase-2 
(COX-2) transcriptional activity might be the mechanism 

of cancer cell growth inhibition by flavonoids in Onion 
peel extract [163]. Further in vitro and in vivo studies for 
Onion peel extract and its individual components is highly 
recommended to elucidate their mechanism of action as 
cytotoxic agents.

The anti-proliferative activity of the hydroalcoholic 
extracts from different potato varieties was evaluated using 
four human cancer cell lines: MCF-7 (breast carcinoma), 
NCI-H460 (lung carcinoma), HeLa (cervical carcinoma) 
and HepG2 (hepatocellular carcinoma). All the tested 
hydroethanolic extracts showed anti-proliferative activity 
against the tested cancer cell lines, where the extract of the 
Rosemary variety showed the highest activity [86].

Anti‑Microbial Activity

Microbial infectious diseases have been a major public 
risk as the antimicrobial resistance. Several herbs were 
reported as effective antimicrobial agents [12]. Yellow 
and red Onion peel extract had better growth inhibitory 
effect on gram-positive bacteria than gram-negative [164, 
165]. Fredotovi´c et al. reported that the yellow Allium 
Cepa L. peel extract was more effective than the red vari-
ety as demonstrated by strong growth inhibition of the 
two Staphylococcus aureus strains (Clinical/ MRSA and 
ATCC 29,213) [42]. Similar results for onion biowastes 
and the bulb were reported [96, 166, 167]. Conversely, 
both varieties exhibited slight or no inhibition against the 
growth of some gram positive bacteria such as Streptococ-
cus pyogenes, Listeria monocytogenes, Bacillus cereus, 
Enterococcus faecalis as well as gram negative bacteria 
(Escherichia coli and Klebsiella pneumoniae) [42].

Quercetin 3,4-diglucoside and quercetin 4´-monogluco-
side showed the same observed inhibitory effects on the 
above-mentioned strains, except Enterococcus faecalis, 
which was somewhat more affected by quercetin mono-
glucoside [42]. Data from previous works have shown 
that quercetin aglycone had better growth inhibition of 
microbes than quercetin glycosides forms [165, 167, 168]. 
No statistically significant anti-fungal activity of yellow 
and red Onion peel extract against Candida albicans and 
food-poisoning mold, Aspergillus niger were reported 
[165, 168].

Potato peels acidified ethanolic extract of the commercial 
Russet samples had inhibitory activity against one Tricho-
monas vaginalis strain and two distinct strains of the related 
Tritrichomonas foetus with also had antibacterial activity 
against Escherichia coli and Salmonella Typhimurium [53]. 
Potato peels acidified ethanolic extract also had antiviral 
effects opposed to human enteric viruses [75]. PPE inhib-
ited biofilm formation in Streptococcus mutans using crystal 
violet assay (p < 0.05) [160].
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Anti‑Diabetic Activity

Diabetes is one of the serious metabolic syndromes char-
acterized by abnormal increase of blood glucose level. The 
predominant causes of diabetes mellitus are insulin defi-
ciency in type 1 or insulin resistance in type 2. Poorly con-
trolled hyperglycemia will result in glycation of proteins and 
formation of advanced glycation end products (AGEs) [169]. 
Fortunately, high concentrations of the most bioactive hypo-
glycemic flavonoids and quercetin derivatives are present in 
the outer dry layers of onion bulb [170, 171]. A methanolic 
extract of Onion peel extract demonstrated inhibitory activ-
ity of α-glucosidase in yeast at  IC50 = 0.159 mg/mL. Feeding 
type 2 diabetic mice with a diet supplemented with 0.5% 
Onion peel extract  for seven weeks significantly reduced 
blood sugars and glycated hemoglobin primarily through 
α-glucosidase inhibition [172].

Jung et al. reported that therapy of type 2 diabetic rats 
with 1% Onion peel extract improved insulin resistance and 
glucose tolerance through up-regulation of insulin recep-
tors and glucose transporters (GLUT4) in the muscle tissue 
[173]. Significant elevation of glycogen level in the liver 
and skeletal muscle supported the insulin sensitizing effect 
of Onion peel extract. Subjects with type 2 diabetes mellitus 
have impaired blood lipid profile and are characterized with 
metabolic dysregulation of FFAs (free fatty acids) [169]. 
Previous lines of evidence suggested that FFAs have a sig-
nificant contribution in the production of ROS with acti-
vation of macrophage to release inflammatory cytokines 
making the muscle cells insulin resistant [174]. Admin-
istration of 1% Onion peel extract in diabetic rats showed 
anti-inflammatory activity, by reducing TNF-α and IL-6, 
besides antioxidant activity by suppressing MDA level in 
liver tissue and increasing SOD activity. Therefore, it was 
suggested that Onion peel extract  can improve insulin sen-
sitivity, by its lipid metabolism enhancing, antioxidant, and 
anti-inflammatory activity [173].

Moreover, feeding diabetic rats with bread supplemented 
with 1% and 3% Onion peel extract  for eight weeks lowered 
blood glucose level and alleviated oxidative stress in liver 
and kidney tissues [175]. Supplementation of streptozotocin-
induced diabetic mice with AIN93G diet with 0.1 or 0.5% 
quercetin for two weeks resulted in decreased levels of blood 
glucose and plasma insulin. Additionally, diminished oxida-
tive stress, decreased gene expression of cyclin-dependent 
kinase inhibitor 1a (Cdkn1a) that regulates cell cycle, altered 
expression of hepatic genes affected by streptozotocin were 
recorded in diabetic mice fed on dietary quercetin [170]. 
Hence, we suggested to examine the postprandial metabolic 
and appetitive responses toward an established dietary for-
mula like bread with health-promoting effects in human tri-
als. Further, the in vitro α-glucosidase inhibitory activity 
of the hexane, ethyl acetate and methanol extracts of potato 

peels powder were compared where it was found the metha-
nol extract had the highest activity with  IC50 = 184.36 mg/
mL [72].

Anti‑Hyperlipidemic Activity

Obesity lead to many chronic disorders; diabetes, hyperten-
sion, and cardiovascular disorders [109, 176]. Where, Onion 
peel extract and Potato peel extract were effective in the 
management and prevention of obesity [82, 177, 178]. In 
3T3-L1 preadipocyte cells, Onion peel extract demonstrated 
anti-obesity effect by suppressing preadipocyte differentia-
tion and inhibiting adipogenesis through modulation of the 
pathways for fatty acid β-oxidation, thermogenesis, and 
lipid metabolism [177]. It was found that quercetin exerted 
anti-adipogenesis activity by activating the AMP-activated 
protein kinase (AMPK) signaling pathway in 3T3-L1 preadi-
pocytes [179]. Eight-week supplementation of obese rats 
with quercetin-rich Onion peel extract showed a significant 
weight reduction. This anti-hyperlipidemic effect could be 
traced to down-regulation of fatty acid synthase (FAS), per-
oxisome proliferator-activated receptor γ (PPAR γ), acetyl-
CoA carboxylase (ACC), and CCAAT/enhancer binding 
protein (C/EBP-α). High-fat diet supplemented with 0.36 
or 0.72% Onion peel extract significantly up-regulated the 
mRNA expression of carnitine palmitoyl transferase-1 α 
(CPT-1α) [177]. In a randomized double-blinded placebo-
controlled study, obese women were received capsules of 
Onion peel extract containing 50 mg of quercetin twice 
daily for 12 weeks had decreased their body mass index 
and improved lipid profile [146, 178]. Additionally, dietary 
intake of potato peels powder prevent weight gain in mice 
having high-fat diet which suggest the significance of potato 
peels as effective food for management of obesity [82]. Vari-
ous researchers have documented that onion peel extract had 
anti-obesity effect as it is rich source of bioactive polyphe-
nolic compounds [124].

Cardioprotective Activity

Dyslipidemia and hypertension are risk factors for car-
diovascular disorders as stroke and coronary heart disease 
[180]. Naseri et al. reported that Onion peel extract  had 
hypotensive and vasorelaxant effects in rats through excel-
lent antioxidant activity of quercetin and inhibition of vas-
cular smooth muscle cells  Ca2+ influx [181]. An in vitro 
study revealed the preventing effects on collagen-induced 
platelet aggregation of Onion peel extract  was mediated 
by preventing of aggregation-inducing molecules; intracel-
lular  Ca2+ and thromboxane  A2  (TXA2), cyclooxygenase-1 
(COX-1) and  XA2 synthase (TXAS) activities. Also, Onion 
peel extract elevated the formation of aggregation-inhibiting 
molecule; cyclic adenosine monophosphate (cAMP) [182]. 
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Furthermore, ethyl acetate Onion peel extract  showed a 
remarkable reduction in systolic and diastolic blood pres-
sure, pulsation, cardiac oxidative stress and creatine kinase 
in rats when administered (40 mg/kg) [183]. In another trial, 
162 mg/day  Onion peel extract-extracted quercetin reduced 
ambulatory blood pressure in obese participants with pre-
hypertension and stage I hypertension [184]. Consequently, 
Onion peel extract can be beneficial and safe for the manage-
ment of cardiovascular disorders.

Industrial Applications, Including Food and 
Biofuels Productions

Complete utilization of the raw material produced from 
onion and potato processing industries attracts more atten-
tion in the last years for reducing feedstock waste. The 
production of these wastes in unavoidable since food pro-
cessing cannot be completed without peel removal. Current 
researches focus on peel recycling for the development of 
phyto-pharmaceutical and biosynthesis industries [185]. 
Consequently, recycled value-added applications onion and 
potato peel wastes deserve more investments for the develop-
ment of eco-friendly products (Fig. 3).

Phenolic acids are used widely in food preservation, 
feeds, and pharmaceuticals. Potato and onion peels are rich 
in several phenolic acids, of which, chlorogenic acid hydro-
lytic products, quinic and caffeic acids, are of high medicinal 
value. Quinic acid is a starting material for the synthesis 
drugs as Oseltamivir for influenza [186]. Caffeic acid and 
its derivatives have antimicrobial, antioxidant, anti-inflam-
matory and anticarcinogenic activities [187]. Conventional 

extraction of phenolic compounds using organic solvents 
such as methanol, ethanol and ethyl acetate has environmen-
tal concerns, thus, alternative green solvents facilitate food 
applications, avoiding environmental and toxicological con-
cerns. The complicated extraction processes are of high cost, 
therefore, the urgent demand for production of biologically 
active compounds from zero value by-products will achieve 
low costs driven by large scale industrialization,

Environment friendly extraction of gylcoalkaloids from 
potato peel waste, can also be scaled up to an industrial level 
[188]. Glycoalkaloids production from waste can pave the 
way for phyto-pharmaceutical industry [189]. Onion and 
potato peels have been also suggested as sources of dietary 
fibers in food applications. The chance of producing func-
tional foods complemented with onion peel powder will 
increase the antioxidant phenolic compounds and the dietary 
fibers content. Several organic acids such as lactic acid is 
useful for food, pharmaceuticals, and cosmetics industry. 
Lactic acid can be produced through microbial-aided carbo-
hydrates fermentation. Lactic acid production from potato 
peel waste fermentation has been successfully reported 
together with acetic acid and ethanol production [190]. 
Citric acid production from potato residues has been also 
investigated. Potato peel waste can also provide a basis for 
enzyme (α-amylase and β-mannanase) production through 
fermentation.

Diversification of energy resources represents an impor-
tant opportunity for the environmental damage caused by 
fossil-fuel dependent single source energy system. Energy 
replacement through biogas production, a renewable and 
environmentally friendly fuel which can be obtained through 
the processing of organic waste, helps in the global reduc-
tion of  CO2 emission. Biogas production is a complicated 
process involving several stages from anaerobic digestion 
to methanogenesis. Potato processing has been utilized in 
biogas production, however, further research is needed for 
successful utilization of waste [185].

Conclusion

The food industry makes a great number of agro-industrial 
wastes, making them essential to seek for potential ways 
for their valorization. One approach may be to utilize these 
wastes such as a natural supply of high-value functional 
components, while they are valuable in numerous groups of 
constituents, with numerous benefits to human health. Act-
ing as main crops, potato and onion play an indispensable 
role in the human diet worldwide. Potato and onion food 
processing generate annual tons of waste as by-products, 
which are discarded in most countries. These by-products 
cause environmental concern due to microbial spoilage. Tra-
ditionally, these wastes have been used in the production of 

Fig. 3  Recycled value-added applications onion and potato peel 
wastes
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fertilizers and animal feed. On the other side, such wastes 
are rich in bioactive compounds which possess antioxidant, 
antidiabetic, antibacterial, anti-hyperlipidemic, chemo-pre-
ventive and anti-inflammatory activities. Quercetin with its 
derivatives are key dominant components of onions, where 
chlorogenic acid and glycoalkaloids are the important ones 
in potato peels. Future mass production of phyto-pharma-
ceuticals, biogas and lactic acid from these products should 
be increased. Processing of waste in the direction of indus-
try is of high cost and future efforts should find a way to 
develop the waste into practice as lower costs. To bring these 
value-added products, more regulatory approval and coun-
tries’ investments are essential. The conversion of onion and 
potato agro-industrial wastes to value-added products may 
not only provide sustainable resources for production but 
also will reduce the current environmental hazards.
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