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Abstract: In this paper, an automatic control method based on type-2 fuzzy sliding mode control
for a mobile arm robot is presented. These types of robots have very complex dynamics due to the
uncertainty of the arm parameters and the mobility of their base, so conventional control methods
do not provide a suitable solution. The proposed method proves convergence with Lyapunov
theory, and its convergence is mathematically guaranteed. A type-2 fuzzy system is responsible for
approximating unmodulated dynamics, nonlinear terms, and uncertain parameters. In simulations,
the performance of the proposed method with different situations, including uncertainty in arm
parameters, uncertainty in mobile robot parameters (arm robot base), uncertainty in load, as well as
indeterminacy in modeling have been applied. The comparison with two conventional controllers
shows the efficiency and superiority of the proposed method.
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1. Introduction

Today, the robotics industry is developing with high intensity and speed. Robots
are divided into two general categories: arm and mobile. Stationary robotic arms have
been considered in the industry due to their high capability. They can do repetitive tasks
with high accuracy. Despite this advantage, their main weakness is the lack of movement.
To perform tasks with wide access space, mobile robotic puzzle is used [1–5]. Among
the applications of the planet robotic arm, we can mention the military robot lamb load
robot, guard robot, and probe robot [6]. Two-wheeled mobile robots are a subset of non-
holonomic mechanical systems. If the position of the moving parts depends on each other,
the motion constraint is called holonomic. Otherwise, it is called non-holonomic. Non-
holonomic mobile robots are controlled by a number of actuators less than the degrees of
freedom [7,8]. Motion control and tracking are determined by the type of constraint. So far,
many methods have been proposed to control the robot. Interaction between the skilled arm
and the moving arm, the presence of holonomic and non-luteal feeds, and the nonlinear
function are among the features of the mobile robotic arm that control. Model-based control
has been considered as the basis of control methods and plans, in which, assuming the
system model, the control law is presented [9]. In this regard, workplace separation control
is introduced in [10] and nonlinear feedback control is presented in [11]. In both methods,
the effect of external disturbance is not seen. There are many problems in implementing
model-based controllers. One of the most important issues is the dependence on the exact
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model of the system. As the exact model is not available, it has uncertainty. The control
of the controller or the uncertainty of the dynamic parameter is not mediated and the
perturbation of the thorn is even raised. In addition, the complexity of the model makes
the design of the controller difficult.

To deal with this problem, robust and adaptive control methods have been applied.
Adaptive tracking control resistant to parametric uncertainty and external perturbation
was presented in [12–15]. The control loop configuration involves two parts, kinematic
and adaptive control. Adaptive tracking control of the workspace path in the presence
of uncertainty and perturbation was presented in [16], which does not require a torque
sensor to estimate external perturbations. In both methods, perturbation was considered
as a linear combination of several parameters. Adaptive robust control to control robot
ether movement with holonomic and non-holonomic constraints was proposed in [17], in
which parametric uncertainty and external perturbation were considered. Adaptive energy
movement control was performed with output feedback for the skilled mobile arm in [18],
which is resistant to parametric and dynamic uncertainty. Moreover, to prevent sliding
in the force control ring, a non-holonomic constraint between the wheels and the ground
was employed.

Sliding mode control is used as an effective method for the robust control of nonlinear
systems. The problem with this method is the high frequency of the control signal, which
stimulates unmodulated dynamics [19–22]. In the adaptive sliding mode control based
on the backstepping method, the adaptive backstepping control is used to deal with the
parametric uncertainty and the sliding mode method is used to deal with the limited
disturbance. In contrast, fuzzy control has received more attention in recent years due to
its ability to deal with uncertainty and simple design. The advantage of the fuzzy control
method over conventional control methods is the ability to use language rules to employ
experienced people [23]. Fuzzy control, as a model-free method, is simply used to control
complex systems [24]. The ability to deal with fuzzy system uncertainties is improved by
the law of adaptation [25]. In this respect, Lyapunov’s direct method is used to design
adaptive fuzzy control [26]. The fuzzy system is also used as a nonlinear system estimator
in adaptive fuzzy control [27].

In [28], adaptive neuro-fuzzy control was presented to control the skilled arm on
a sloping surface that is resistant to external disturbance. Adaptive force/neuro-fuzzy
position control was introduced for the cooperation of skilled mobile arms, in which several
robots work together to move an object with an unknown geometry and the physical model
with unknown dynamics is robust. In [29], adaptive fuzzy control of a wheeled robot is a
combination of kinematic control and adaptive fuzzy control that models the dynamics
of the system considering the motors. Moreover, a control method has been presented
based on an adaptive agate network for open and moving bodies. The control output is
composed of two parts, the linear control component and compensating fit, which was
intended to deal with uncertainty and turbulence [30–32]. Most of the previous designs
have a complex structure full of companions and depend on the system model. Type-2
systems are much stronger than fuzzy type-1 and have better performance [33–36]. These
systems have been widely used in control engineering and in increasing the accuracy of the
controller. Therefore, in this article, for the first time, a type-2 fuzzy system is utilized in
the sliding mode control structure for a mobile manipulator robot. The novelties in this
paper are as follows:

• Two-stage control design for mobile manipulator system
• Stability analysis of the control system
• Use trapezoidal type-2 fuzzy sets combined with sliding mode control

The control scheme proposed in this article consists of two sections: kinematic and
dynamic control. The purpose of kinematic control is to calculate the optimal speed for
the robot so that the robot can follow the desired path accurately (instantaneous position
control). The purpose of the dynamic control is to track the desired speed provided by the
new type-2 adaptive fuzzy design (instantaneous speed control). The innovation here lies
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in compensating for the type-2 fuzzy system approximation error for free convergence of
the desired path in the presence of uncertainty. The features of this control are simplicity in
design, proper performance in tracking the desired path in the presence of certainty science,
and the guarantee of stability. This control method includes type-2 fuzzy sliding mode
control and adaptive linear control. The mortal sliding gain control law brings the system
state vector closer to the equilibrium point, and the adaptive linear control law ensures
convergence to the desired target. Control rules are durable against finite perturbation.

2. Mathematical Modeling

The wheeled mobile robotic arm consists of two parts: the skilled arm and movable
wheel. The moving body has two active wheels and one inactive wheel [19,22]. Side and
top views of the robot are presented in Figure 1a,b, respectively. The axle of the active
wheels is located in the same direction. The axis of the wheels is located at a distance d
from the center of the mass and b is the distance between each wheel and the centerline
as displayed in Figure 1. In robot modeling, the inactive multi-directional front wheel
is omitted.

Mathematics 2022, 10, x FOR PEER REVIEW 3 of 18 
 

 

control). The purpose of the dynamic control is to track the desired speed provided by the 
new type-2 adaptive fuzzy design (instantaneous speed control). The innovation here lies 
in compensating for the type-2 fuzzy system approximation error for free convergence of 
the desired path in the presence of uncertainty. The features of this control are simplicity 
in design, proper performance in tracking the desired path in the presence of certainty 
science, and the guarantee of stability. This control method includes type-2 fuzzy sliding 
mode control and adaptive linear control. The mortal sliding gain control law brings the 
system state vector closer to the equilibrium point, and the adaptive linear control law 
ensures convergence to the desired target. Control rules are durable against finite pertur-
bation. 

2. Mathematical Modeling 
The wheeled mobile robotic arm consists of two parts: the skilled arm and movable 

wheel. The moving body has two active wheels and one inactive wheel [19,22]. Side and 
top views of the robot are presented in Figure 1a,b, respectively. The axle of the active 
wheels is located in the same direction. The axis of the wheels is located at a distance 𝑑 
from the center of the mass and 𝑏 is the distance between each wheel and the centerline 
as displayed in Figure 1. In robot modeling, the inactive multi-directional front wheel is 
omitted. 

 
(a) 

 
(b) 

Figure 1. Schematic representation for the robot: (a) Side view and (b) Top view. 

The 𝑂 𝑋 𝑌 𝑍  represents the base coordinate system and the 𝑂 𝑋 𝑌 𝑍  coordi-
nate system is connected to the moving body. 𝑂  is selected as the midpoint of the line 
connecting the two active wheels and the 𝑋  axis is perpendicular to the line connecting 
the two active wheels. 

The state vector is represented by 𝑞 = [𝑥  𝑦  𝜑 𝜃  𝜃 ] , where 𝑥  and 𝑦  are the 
coordinates of the 𝑃  point in the base coordinate system, 𝜑 is the angle of the 𝑋  axis 
relative to the 𝑋  axis and the variables 𝜃  and 𝜃  represent the right and left wheel 
rotation angles, respectively. Due to the position of the wheels and the assumption of 
complete rotation for them, the moving wheel drive in this robot has three movement 
constraints. The first non-holonomic constraint that prevents the wheels from moving 
along the 𝑌  axis is defined as follows −𝑥𝑐 sin(𝜑) + 𝑦𝑐 cos(𝜑) − 𝑑𝜑 = 0  (1)

The other two constraints are related to the speed of the body and the speed of the 
wheels, which create non-sliding conditions for the wheels to roll completely along the 𝑋  axis, namely: 

Figure 1. Schematic representation for the robot: (a) Side view and (b) Top view.

The OBXBYBZB represents the base coordinate system and the OmXmYmZm coordi-
nate system is connected to the moving body. Om is selected as the midpoint of the line
connecting the two active wheels and the Xm axis is perpendicular to the line connecting
the two active wheels.

The state vector is represented by q
b
= [xc yc ϕ θR θL]

T , where xc and yc are the
coordinates of the Pc point in the base coordinate system, ϕ is the angle of the Xm axis
relative to the XB axis and the variables θR and θL represent the right and left wheel rotation
angles, respectively. Due to the position of the wheels and the assumption of complete
rotation for them, the moving wheel drive in this robot has three movement constraints.
The first non-holonomic constraint that prevents the wheels from moving along the Ym axis
is defined as follows

− .
xc sin(ϕ) +

.
yc cos(ϕ)− d

.
ϕ = 0 (1)

The other two constraints are related to the speed of the body and the speed of the
wheels, which create non-sliding conditions for the wheels to roll completely along the Xm
axis, namely:

.
xc cos(ϕ) +

.
yc sin(ϕ) + b

.
ϕ = r

.
θR

.
xc cos(ϕ) +

.
yc sin(ϕ)− b

.
ϕ = r

.
θL

(2)
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By connecting two rotating interfaces to the moving body at point P, a complete mobile
gaming system is created. Its state vector is defined as follows:

q = [xc yc ϕ θR θL θ1 θ2]
T (3)

The variables θ1 and θ2 are the angle of the first interface with respect to the Xm and the
angle of the second interface with respect to the OmXmYm, respectively. This can be written:

A
(

q
) .

q = 0

A
(

q
)
=

− sin(ϕ) cos(ϕ) −d 0 0 0 0
− cos(ϕ) − sin(ϕ) −b r 0 0 0
− cos(ϕ) − sin(ϕ) b 0 r 0 0

 (4)

According to Equation (4), there is a new state vector, v, that establishes the follow-
ing equations:

A
(

q
)

S
(

q
)
= 0

.
q = S

(
q
)

v

v =
[ .
θR

.
θL

.
θ1

.
θ2

]T
∈ RN×1(N = k−m)

(5)

where “m” is the dimensions of moving coordinates and is therefore equal to 3, and “k”
is the state vector dimension of the system and is therefore equal to 7. Finally, N is the
dimensions of the new state vector, which is equal to 4.

S(q) =

c(bcos(ϕ)− dsin(ϕ)) c(bcos(ϕ) + dsin(ϕ)) 0 0
c(bsin(ϕ) + dcos(ϕ)) c(bsin(ϕ)− dcos(ϕ)) 0 0

c −c 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


(6)

where c = r
2b .

The mechanical model of the robot is obtained using the Euler–Lagrange method. The
Lagrangian L

(
q.

.
q
)

is defined as the difference between the kinetic energy and the potential
energy of the system. Considering the torque of the motors as the input of the robot, we
have the following equation,

d
dt

∂L
(

q.
.
q
)

∂
.
q

− ∂L
(

q.q
)

∂q
= u (7)

By solving the Euler–Lagrange equations, the dynamics of the robot become:

Hu

(
q
) ..

q + Vu

(
q.

.
q
) .

q + Gu

(
q
)
= E(τi + τdis(t))− AT

(
q
)

λ (8)

where Hu

(
q
)
∈ Rk×k is inertia matrix, Vu

(
q.

.
q
)
∈ Rk×k is Coriolis force and centrifugal

force, Gu

(
q
)
∈ Rk×1 is the gravitational force, τi ∈ Rk×1 is the momentum of motion,

τdis(t) ∈ Rk×1 is the momentum of external turbulence, and AT
(

q
)

λ are robot constraints.

The matrix E ∈ Rk×N maps the torque vector to the variables of the joint space and the
robot torque vector includes τR, the torque applied to the right wheel, τL, the torque applied
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to the left wheel, τ1, the torque applied to the first rotating joint of the arm, and τ2, the
torque applied to the second rotational joint of it.

τi =
[
τR τL τ1 τ2

]T

E =


0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


T

(9)

Multiplying the sides of Equation (6) in ST
(

q
)

, the following equation is obtained,

ST
(

q
)

Hu

(
q
) ..

q + ST
(

q
)

Vu

(
q.

.
q
) .

q + ST
(

q
)

Gu

(
q
)
=

ST
(

q
)

Eτi + ST
(

q
)

Eτdis(t)− ST
(

q
)

AT
(

q
)

λ
(10)

For this robot, the matrices S
(

q
)

, Hu

(
q
)

, Vu

(
q.

.
q
) .

q, and Gu

(
q
)

in Equation (10) are

independent of the variables θL and θR, so we can write S
(

q
n

)
, Hu

(
q

n

)
, Vu

(
q

n
.

.
q
) .

q and

Gu

(
q

n

)
, where q

n
= [xc yc ϕ θ1 ]

T .

Based on ST
(

q
)

AT
(

q
)
= 0, the above equation becomes simpler.

H
(

q
n

) .
v + C

(
q

n
.v
)

v + g
(

q
n

)
= τ + τd (11)

In which,
H = ST

(
q

n

)
Hu

(
q

n

)
S
(

q
n

)
∈ RN×N , (12)

C = ST
(

q
n

)
Hu

(
q

n

) .
S + ST

(
q

n

)
Vu

(
q

n
+ S

(
q

n

)
v
)

S
(

q
n

)
∈ RN×N , (13)

g = ST
(

q
n

)
Gu

(
q

n

)
∈ RN×1 (14)

τ = ST
(

q
n

)
Eτi ∈ RN×1 (15)

τd = ST
(

q
n

)
Eτdis(t) ∈ RN×1 (16)

Note 1: The matrix H is symmetric and positive definite.
Note 2: The

.
H − 2C matrix is nonsymmetric.

The robot state space model X =
[
q v
]T

is expressed as Equation (17).

.
X =

 S
(

q
)

v

H−1
(

τ + τd − Cv− g
) (17)

3. Automatic Controller Design

In this paper, we have tried to control the state vector qn for the robot so that the robot
follows the desired path qr. According to Equation (11), the state vector qn must be adjusted
and controlled to follow the desired path. To achieve this goal, two kinematic controls and
dynamic controls have been used.

Kinematic control is a control rule for Equation (5) whose output is vc vector. This
vector is adjusted so that the state vector q

n
converges to the desired path qr. Dynamic

control creates the input signal so that the state vector v converges to vc vector. The
novelty of this paper is to provide a new dynamic control, which will be discussed in the
following sections.
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3.1. Kinematic Control

The kinematic control is a loop in the overall control system and is included in most
wheeled robot control designs. The error vector is defined as given in Equation (18).

Ẽq = qr − q
n

=
[
xr − x yr − y ϕr − ϕ θ1r − θ1 θ2r − θ2

]T (18)

where qr is the desired path that the robot should follow.
The goal of the controller is to satisfy Ẽq → 0 .
Due to the fact that the moving body has movement constraints, its control also

requires a separate method. Thus, the error vector is divided into the moving body error
vector ẼqB and the arm error vector ẼqM.

Ẽq =
[

ẼT
qB ẼT

qM

]T
(19)

where ẼqB = [xr − x yr − y ϕr − ϕ]T and ẼT
qM = [θ1r − θ1 θ2r − θ2]

T . Moreover, the robot
velocity vector of the robot v is divided into two state vectors of the velocity of the wheels
of the moving body vw and the velocity vector of the rotational joints of the arm vM.

ν =
[
vT

W vT
M
]T (20)

in which vw =
[ .
θR

.
θL

]T
and vM =

[ .
θ1

.
θ2

]T
.

The method utilized in [24] was used to control the moving body. The method used in
this study is model-free neuro-fuzzy controller (NFC). This study was performed in order
to optimize the parameters and to simplify the design of power system stabilizers (PSSs).
According to the results obtained in this study, it has been observed that the mentioned
method has a better performance. The velocity of a moving body is defined as Equation (21).

vB =
[
vb ωb

]T (21)

where vb is the size of linear velocity and ωb is angular velocity. The body velocity vB is
related to the wheel speed vw as,

vW = TBvB =

[ 1
r

b
r

1
r

−b
r

]
vB (22)

The error vector in the device connected to the moving body is described in Equation (23).

EqB =
[
ex ey eϕ

]T
= TẼqB =

 cos ϕ sin ϕ 0
− sin ϕ cos ϕ 0

0 0 1

 xr − x
yr − y
ϕr − ϕ

 (23)

It is suggested in the method given in [24] that control laws track the path desired by
the moving body.

vBc =

[
vbc
ωbc

]
= fB

(
vr, ωr, EqB

)
=

[
vrcos eθ + Kxex

ωr + vr
(
Kyey + Kθ sin eθ

)] (24)

where vr and ωr are the desired linear velocity and angular velocity for the robot body and
Kx, Ky, Kθ > 0 are constant coefficients. It must be the case that vr > 0 to ensure stability.
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Now, by placing the relations (22) and (21) in (20), the kinematic control of the moving
body is rewritten as Equation (25).

vWc = TB fB

(
vr, ωr, TẼqB

)
(25)

Besides, for tracking, the desired path is suggested by the joints of the robot arm of the
following control law,

vMc =

[ .
θ1c.
θ2c

]
= fM

( .
θ1r,

.
θ2r, θ1r, θ2r, θ1, θ2

)
=

[ .
θ1r + λ1(θ1r − θ1).
θ2r + λ2(θ2r − θ2)

] (26)

According to Horowitz, λ1, λ1 > 0 must be established to ensure stability [37].
Now, according to Equations (25) and (26), the kinematic control is obtained as

Equation (27), where vc is the output vector of the control system.

vc =


.
θRc.
θLc.
θ1c.
θ2c

 =

 TB fB

(
vr, ωr, TẼqB

)
fM

( .
θ1r,

.
θ2r, θ1r, θ2r, θ1, θ2

) (27)

3.2. Dynamic Control

Fuzzy systems have been used in various fields for many years. In type-1 fuzzy
systems, the membership degree of fuzzy sets is a scalar number. However, in type-2
(general) fuzzy systems, this membership degree is itself a fuzzy set. By considering
the fuzzy set of membership degree as an interval, the interval type-2 fuzzy system was
introduced. The presence of uncertainty in systems and the inability to define accurate
fuzzy membership functions led to the superiority of type-2 fuzzy system over type-1.

This control plan must meet the conditions of ν to convergence vc. For this purpose,
the robot velocity error vector is defined as Equation (28).

Ẽv = vc − ν =
[
ev1 . . . ev4

]T (28)

The fuzzy control scheme consists of 4 interval type-2 fuzzy systems of the Mamdani
type. Each fuzzy system has 4 inputs that are included. The membership function was
designed for inputs as following equations (see Figure 2).

µZiL(x) =



0.8(x−aL
1 )

aL
2−aL

1
i f aL

1 ≤ x ≤ aL
2

0.8 i f aL
2 ≤ x ≤ aL

3
0.8(aL

4−x)
aL

4−aL
3

i f aL
3 ≤ x ≤ aL

4

0 otherwise

(29)

µZiU (x) =



(x−aU
1 )

aU
2 −aU

1
i f aU

1 ≤ x ≤ aU
2

1 i f aU
2 ≤ x ≤ aU

3
(aU

4 −x)
aU

4 −aU
3

i f aU
3 ≤ x ≤ aU

4

0 otherwise

(30)

where x = evi i = 1, . . . , 4 represents the input number. The output membership functions
are defined as follows.
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µSM.k(x) = exp (−(uk − uFSMC.k)
2/32) (31)

µAl.k(x) = exp (−(uk − uALC.k)
2/32) (32)

where k = 1, . . . , 4 represents the fuzzy system number. The adaptive linear control signal is
denoted by uALC and and uFSMC is the control signal from the fuzzy sliding mode controller.
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The control strategy is such that the control of the fuzzy sliding mode takes the robot
velocity state to a certain neighborhood of the desired state vector. In the optimal state
neighborhood, adaptive linear control ensures convergence to the optimal state. For this
purpose, each fuzzy system consists of 2 rules.

Rule 1 : i f e1 is Z̃1 and . . . e4 is Z̃4 then uk is ALk
Rule 2 : i f e1 is not Z̃1 or . . . e4 is not Z̃4 then uk is FSMk

Using the Mamdani inference system [38], single fuzzy generator, and non-fuzzy
center averaging, the output signal of the fuzzy system is obtained as Equation (33).

uk = uALC.k

ψL
1

(
Ẽv

)
+ ψU

1

(
Ẽv

)
2

+ uFSMC.k

ψL
2

(
Ẽv

)
+ ψU

2

(
Ẽv

)
2

 (33)

where ψL
1

(
Ẽv

)
= ∏4

i=1 µZiL(evi), ψL
2

(
Ẽv

)
= 1−∏4

i=1 µZiL(evi), ψU
1

(
Ẽv

)
= ∏4

i=1 µZiU (evi),

ψU
2

(
Ẽv

)
= 1−∏4

i=1 µZiU (evi). In the following subsections, we examine fuzzy sliding
mode control and adaptive linear control. Figure 2 shows the membership function of the
type-2 fuzzy system’s input.

3.3. Type-2 Fuzzy Sliding Mode Control

To design a fuzzy sliding mode controller, the robot model was considered as
Equation (34).

.
v = fs + gsτi (34)

where fs = H−1(
τdis(t)− Cv− g

)
and gs = H−1. Proportionally integral is suggested for

the sliding surface.

s =
[
s1 . . . s4

]T
= Ẽv + β

∫
Ẽvdt (35)



Mathematics 2022, 10, 3773 9 of 18

where β is an integral coefficient and must be β > 0 according to the Horowitz criterion
for convergence. The mode path in the tracking coordinate device must be directed to the
sliding surface. A certain positive function can be proposed as Equation (35).

Vs(s) = 0.5sTs (36)

If the condition
.

Vs(s) ≤ 0 can be guaranteed, then Vs(s)→ 0 can be guaranteed. By
derivative of Equation (36),

.
Vs(s) =

.
sTs (37)

Therefore, the following condition must be met to converge.

.
sT
(s/ ‖ s ‖) ≤ −η (38)

where η is a positive constant. By placing the derivative of (37) in Equation (38),( .
vc − ν + βẼv

)T
(s/ ‖ s ‖) ≤ −η (39)

Now, substituting Equation (34) into Equation (39) so that the controller output appears
in the equations, ( .

vc − fs − gsτi + βẼv

)T
(s/ ‖ s ‖) ≤ −η (40)

The limitation of the system state variables is demonstrated. Suppose fs is limited, i.e.,

‖ fs ‖≤ F (41)

where F is a positive constant. Taking γs = η + F, the sliding mode control is calculated as
Equation (42).

u = g−1
s

( .
vc + γssgn(s) + βẼv

)
(42)

where sgn(s) = [sgn(s1) . . . sgn(s4) ]
T is the sign function. In order to reduce the control

signal vibration, the fuzzy form of the sign function was used.

uFSMC = g−1
s

( .
vc + βẼv + uFSGN

)
(43)

If by applying a constraint, the output of the controller exceeds the maximum torque
value, the controller is practically out of the circuit, and only the maximum torque is applied.

To create uFSGN , 4 interval type-2 fuzzy systems of the Mamdani type are used. Each
of them is single input single output. The membership function was designed for inputs as
given by the following equations.

µPjL
(
sj
)
=



0.8(sj−bL
1 )

bL
2−bL

1
if bL

1 ≤ sj ≤ aL
2

0.8 if bL
2 ≤ sj ≤ bL

3
0.8(bL

4−sj)
bL

4−bL
3

if bL
3 ≤ sj ≤ bL

4

0 otherwise

(44)

µPjU
(
sj
)
=



(sj−bU
1 )

bU
2 −bU

1
if bU

1 ≤ sj ≤ bU
2

1 if bU
2 ≤ sj ≤ bU

3
(bU

4 −sj)
bU

4 −bU
3

if bU
3 ≤ sj ≤ bU

4

0 otherwise

(45)
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where sj j = 1, . . . , 4 represents the input number. The output membership functions are
defined as follows,

µFSGN.j(x) = exp
(
−
(
uj − uFSGN.j

)2/32
)

(46)

where j = 1, . . . , 4 represents the fuzzy system number. Each fuzzy system has the follow-
ing form.

Rule j : if sj is P̃j then uFSGN.j is Ñj

Both P̃j and Ñj are type-1 fuzzy number. Using the Mamdani inference system [34],
single fuzzy generator, and non-fuzzy center averaging, the output signal of the fuzzy
system is obtained as Equation (47).

uFSGN = ∑4
j=1 uFSGN.j

ψL
1

(
Ẽv

)
+ψU

1

(
Ẽv

)
2

 (47)

where ψL
1
(
sj
)
= ∏4

j=1 µPjL
(
sj
)
µFSGN.j

(
uFSGN.j

)
., ψU

1
(
sj
)
= ∏4

j=1 µPjU
(
sj
)
µFSGN.j

(
uFSGN.j

)
.”

3.4. Adaptive Linear Control

To define the adaptive linear control, the following vector is defined.

E = Xd − X =

[
(vc − v)T

(
q

r
− q

n

)T
]T

=
[

ẼT
v ẼT

q

]T
(48)

The goal of the controller is E→ 0 . Assuming that there is no perturbation, Equation
(48) is modified as Equation (49).

H
(

q
n

) .
v + C

(
q

n
.v
)

v + g
(

q
n

)
= τ (49)

With linearization of (48) around the equilibrium point E = 0,

− A3
.
Ev = τ − τd + A1Ẽq + A2Ẽv (50)

where A1 =

(
∂H
∂q

n
+ ∂C

∂q
n
+

∂g
∂q

n

)∣∣∣∣
xd

, A2 =
(

C + ∂C
∂v

)∣∣∣
xd

, A3 = H|xd
and τd = H

(
q

r

) .
vc +

C
(

q
r
, vc

)
+ g, as recommended for the following control law:

τ = C1Ẽq + C2Ẽv + C0 (51)

By applying the control law (51) to Equation (50), we obtain:

.
Ẽv = A−1

3

(
(τd − C0)− (A1 + C1)Ẽq − (A2 + C2)Ẽv

)
(52)

Assuming C0 = τd and C1 = −A1, Equation (52) is simplified as follows:

.
Ẽv + A−1

3 (A2 + C2)Ẽv = 0 (53)

Assuming A−1
3 (A2 + C2) = K and K is Horowitz matrix, Ẽv → 0 is also established.

According to the kinematic control Ẽq → 0 is also achieved. So, with the above assumptions,
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E→ 0 is established. Suppose that control of (53) in the equilibrium point sets the velocity
vector convergence conditions for model of (49).

H
(

qn

) .
vc + C

(
q

n
.v
)

vc + g
(

q
n

)
− τd + KẼv

= C1Ẽq +
(
C2 + K

)
Ẽv + C0

= K1Ẽq + K2Ẽv + K0

(54)

Equation (54) can be rewritten as a linear combination of parameters as follows:

H
(

qn

) .
vc + C

(
q

n
.v
)

vc + g
(

q
n

)
− τd + KẼv

= Y
(

Ẽq.Ẽv

)
P

(55)

where Y
(

Ẽq.Ẽv

)
is the regression matrix and P is the parameter matrix. The law of adaptive

linear control is presented as follows:

τ = K̂1Ẽq + K̂2Ẽv + K̂0 = Y
(

Ẽq.Ẽv

)
P̂ (56)

By applying (52) to model of (56), we get:

H
(

q
n

) .
v + C

(
q

n
.v
)

v + g
(

q
n

)
− τd = Y

(
Ẽq.Ẽν

)
P̂ (57)

Using the previous relations, we can write Equation (58) as follows:

H
(

q
n

) .
Ẽv + C

(
q

n
.v
)

Ẽv + KẼv = Y
(

Ẽq.Ẽv

)(
P− P̂

)
= Y

(
Ẽq.Ẽv

)
P̂

(58)

A certain positive function V can be suggested as follows:

V = 0.5ẼT
v H
(

q
n

)
Ẽv + 0.5P̃T P̃/γ (59)

Derived from (59), we have:

.
V = ẼT

v H
(

q
n

) .
Ẽv + 0.5ẼT

v
.

H
(

q
n

)
Ẽv −

.
P̂

T
P̃/γ (60)

Then, we can obtain:

.
V = ẼT

v

(
−C
(

q
n
.v
)

Ẽv − KẼv + Y
(

Ẽq.Ẽv

)
P̃
)

+0.5ẼT
v

.
H
(

qn

)
Ẽv −

.
P̂

T
P̃/γ

(61)

With simplification, the above equation becomes:

.
V = −ẼT

v KẼv + 0.5ẼT
v (H

(
q

n

)
− 2C

(
q

n
.v
)
)Ẽv

+

(
ẼT

v Y
(

Ẽq.Ẽv

)
−

.
P̂

T
/γ

)
P̃

= −ẼT
v KẼv +

(
ẼT

v Y
(

Ẽq.Ẽv

)
−

.
P̂

T
/γ

)
P̃

(62)
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So, it is obtained
.
P̂

T
= γẼT

v Y
(

Ẽq.Ẽv

)
by zeroing ẼT

v Y
(

Ẽq.Ẽv

)
−

.
P̂

T

γ = 0, so the
adaptation law can be written as Equation (63).

P̂(t) =
∫

γY
(

Ẽq.Ẽv

)T
Ẽvdt (63)

Finally, we have:
.

V = −ẼT
VKẼv ≤ 0 (64)

Ẽv → 0 is proved according to Lyapanov theory. Given that
.

V ≤ 0, at all times,
we have:

V
(

Ẽv.P̃
)
≤ V

(
Ẽv(0), P̃(0)

)
(65)

Thus, Ẽv and P̃ are limited. It can also be claimed that v is limited by vc being limited.
So, all system state variables are also limited, implying that the stable system is of limited
input-output type.

4. Simulation Results

In this section, to evaluate the performance of the adaptive fuzzy control scheme,
the proposed control law is applied to the wheeled mobile arm and its performance is
compared with the robust adaptive control (RAC) method of [3]. The kinematic and
dynamic parameters of the robot are given in Tables 1 and 2, respectively. In Table 1, It is
assumed that the mass of the link is spread uniformly along its length. The parameters
of kinematic and dynamic controllers are given in Tables 3 and 4, respectively. In order
to ensure stability according to the Horowitz criteria as described in Section 3, it must be
the case that λ1, λ2 > 0 established in the kinematic controller. The constant parameters
of the controllers are obtained following the trial-and-error method to achieve the desired
performance in the simulation. The initial value of the zero adaptive parameters is selected
and the fuzzy controller parameters are comparatively calculated from expressed equations.
The proposed control is continuous and usually the data collection time in the digital control
is specified for the digital control. The robot corresponding to the proposed design has a
suitable data collection frequency of 200 Hz. The robot at the beginning of the movement is
X(0) = 0. According to the previous equations, the optimal path can be written as follows:

Xd(t) = 2 cos(ω1t), Yd(t) = 2sin(ω1t)
θ1(t) = 2 sin(ω2t), θ2(t) = 2cos(ω2t)

ϕd(t) = ω1t + π/2
(66)

where ω1 = 0.1 and ω1 = 0.4 and the initial values of path (68) are Xd(0) = 2, Yd(0) = 0,
θ1(0) = 0, θ2(0) = 2 and ϕd(0) = π/2. Perturbation is defined as follows:

τd(t = 1.5[sin(0.6t) cos(0.6t) 2 sin(0.3t) 2 cos(0.3t)]T

Table 1. Robot kinematic parameters [39–41].

Parameter Description Value (m)

b The distance of wheel to the robot center line 0.180
d The distance of wheels axis and robot center of mass 0.115
r Wheel radius 0.05

La The distance of point P to the robot center of mass 0.1
L1 Link 1 length 0.15
L2 Link 2 length 0.1

Lcm1 Location of the link 1 center of mass 0.075
Lcm2 Location of the link 2 center of mass 0.05
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Table 2. Robot dynamic parameters.

Parameter Description Value

Iw Wheel inertia 0.0002 kg.m2

mw The mass of wheel 0.160 kg
Ic Body inertia in Z direction 0.280 kg.m2

mc The mass of body 0.1 kg
I1 Link 1 inertia in Z direction 0.15 kg.m2

m1 The mass of link 1 0.1 kg
I2 Link 2 inertia in X/Y directions 0.075 kg.m2

m2 The mass of link 2 0.05 kg

Table 3. Kinematic control parameters.

Kx Ky Kθ λ1 λ2

10 20 0.01 10 10

Table 4. Dynamic control parameters.

γ τsmax bvc bvs P L K

10
0


30
30
10
10




2.5
2.5
2
2




0.1
0.1
1
1

 I4∗4 I9∗9 diag(0.1, 0.1, 1, 1)

Figure 3a shows the performance of controllers in tracking with a moving body. Both
controllers perform well. The magnitude of the tracking error to check the performance of
the proposed controller is plotted in Figure 3b. The size of the body position tracking error
starts from 2 m and in the presence of uncertainty, it converges to zero asymptotically, which
shows the ability of the fuzzy system to overcome uncertainty. The tracking performance
of the two controllers for the angle of the second joint of the arm is compared in Figure 4.
As can be seen, the two controllers are quickly converged to the desired path with the
help of the same kinematic control with a small error. The magnitude of the second arm
joint position tracking error to plot the performance of the proposed controller (AFC) is
plotted in Figure 5. The magnitude of the error starts from 2 radians and converges to zero
in the presence of uncertainty, which shows the ability of the fuzzy system to overcome
uncertainty. Figure 6 shows the error rate of the robot speed tracking by two controllers. In
this comparison, the proposed controller (AFC) performed much better than the RAC, and
the tracking error rate was asymptotically converged to zero. The control signals of AFC
and RAC are compared in Figures 7 and 8 and the superiority of the proposed method can
be seen.

Initially, due to the type-2 fuzzy sliding mode operation in the control loop, we have
the signal chattering, but with the passage of time and the activation of adaptive linear
control, the signal vibration also decreases. Moreover, considering that, in this method, the
law of linear control matching when the error range is small is activated, there are no rapid
changes in the matching parameters, so with the jump of the control signal, the installation
is reduced in another way. The control effort of the RAC in the initial moments is large,
which creates a problem for the robot’s motions, but this problem has been solved despite
the limiting function in the proposed scheme. One of the ways to challenge a control system
is by applying a disturbance to the controlled system. Figure 8 shows the performance
results of both control systems in facing this challenge.
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In Figure 9, at point x = 1 m, a wind disturbance force of 1 N/m is applied in the right
direction, and at point x = 2 m, a force of 0.5 N/m is applied to the robot in the left direction.
As can be seen, the proposed control system has a better performance and has guided the
robot to the desired path at a faster speed. In order to further compare the performance
of the proposed method with other methods, as presented in Table 5, two measures of
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root mean squares error (RMSE) and step response time are calculated. As can be seen
in Table 5, the proposed control system has shown a much better performance than the
methods presented in [29,30] in both the RMSE and the step response time (response speed)
as measurement criteria.
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Table 5. Comparison based on RMSE and step response time.

RMSE Step Response Time (s)

Method of [42] 0.411 1.24
Method of [43] 0.294 1.01

Proposed method 0.153 0.83

5. Conclusions

In this paper, dynamic modeling of a non-holonomic wheeled robotic arm and a new
method of adaptive fuzzy control for a mobile robotic arm were presented. The proposed
scheme is used to compensate for the approximation error of the adaptive fuzzy system, to
achieve asymptotic convergence to follow the desired path in the existence of uncertainties.
The stability of the control system and the convergence of the path to the desired path
were proved by the Lyapunov method. The advantages of the proposed design are the
simplicity of design and proper performance in following the desired path in the presence
of uncertainties. Our model gave an RMSE of 0.153, while the step response time was only
0.83 s. The simulation results show the superiority of the proposed design over a robust
adaptive control method.
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