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Simple Summary: This review brings attention to a crucial yet under-investigated subject which
is vitamin–drug interactions. Fat-soluble vitamins such as vitamins A, D, E, and K have been
proven to possess many beneficial effects in the treatment and prevention of COVID-19. Moreover, it
has been reported that deficiencies of fat-soluble vitamins have been directly linked to COVID-19
infection-related morbidity and mortality, especially in high-risk populations such as cancer and
autoimmune patients. However, many vitamin–drug interactions exist between most of the newly
COVID-19 FDA approved medications and fat-soluble vitamins. Hence, this mandates personalizing
the COVID-19 treatment protocols, especially for patients who have any deficiency in any of these
vital vitamins. Weighing the risk-to-benefit ratio of supplementing any of these fat-soluble vitamins
with COVID-19 medications is considered crucial to maximize the therapeutic benefit and decrease
the side effects of these drugs.

Abstract: COVID-19 is a recent pandemic that mandated the scientific society to provide effective
evidence-based therapeutic approaches for the prevention and treatment for such a global threat,
especially to those patients who hold a higher risk of infection and complications, such as patients
with autoimmune diseases and cancer. Recent research has examined the role of various fat-soluble vi-
tamins (vitamins A, D, E, and K) in reducing the severity of COVID-19 infection. Studies showed that
deficiency in fat-soluble vitamins abrogates the immune system, thus rendering individuals more sus-
ceptible to COVID-19 infection. Moreover, another line of evidence showed that supplementation of
fat-soluble vitamins during the course of infection enhances the viral clearance episode by promoting
an adequate immune response. However, more thorough research is needed to define the adequate
use of vitamin supplements in cancer and autoimmune patients infected with COVID-19. Moreover,
it is crucial to highlight the vitamin–drug interactions of the COVID-19 therapeutic modalities and fat-
soluble vitamins. With an emphasis on cancer and autoimmune patients, the current review aims to
clarify the role of fat-soluble vitamins in SARS-CoV-2 infection and to estimate the risk-to-benefit ratio
of a fat-soluble supplement administered to patients taking FDA-approved COVID-19 medications
such as antivirals, anti-inflammatory, receptor blockers, and monoclonal antibodies.
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1. Introduction

It was announced that the global pandemic COVID-19 was caused by the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2). In December 2019, Wuhan city in China
reported the very first reported cases of this virus [1]. Infection with this virus affects
leukocyte counts and raises plasma inflammatory cytokines, which results in dysregulation
of the immune system [1]. The deregulation in the immune system caused by COVID-19
was the trigger that brought more attention towards cancer and autoimmune patients, due
to the critical repercussions associated with the diseases [1].

The relationship between autoimmunity and cancer results from a shared immune
system dysregulation, which subsequently raises the risk of infections and other conse-
quences [2–4]. The immune status of patients of both diseases is the major issue associating
them with a higher susceptibility in acquiring SARS-CoV-2 as well as a more aggressive
infection requiring hospitalization due to the complications [5,6]. Additionally, during the
pandemic, cancer patients’ mortality rates were found to be greater than those of healthy
individuals [7,8]. Inflammatory cytokines unquestionably contribute to an increase in can-
cer and autoimmune patients’ mortality rates; hence, a more effective treatment strategy is
required to suppress immune system hyper-activation and reduce cytokine production [9].

Recent research has looked at how several fat-soluble vitamins can reduce the overall
severity of COVID-19 infection. The total risk of morbidity and mortality in SARS-CoV-2-infected
individuals was found to be reduced as a result of strong evidence that vitamins A, D,
E, and K hold a significant role in boosting the defensive mechanism and reducing the
cytokine storm and other inflammatory reactions [10]. It is also worth mentioning that
vitamin A and D supplementation have recently shown direct and positive effects on the
prognosis of virally infected patients, and a tangible improvement was observed in HPV
and HIV patients in particular [11,12]. Nonetheless, it has been recently reported that on
the molecular level vitamin D has shown a vital modulatory role in tuning functional im-
munoregulatory features, synchronization between the cellular and viral factors, initiation
of autophagy and apoptosis, and even regulating several genetic and episodes during the
course of the viral infection [13].

Nonetheless, several studies revealed a link between vulnerability to infection and
worse prognosis in COVID-19 patients with deficiencies in one or more of these fat-soluble
vitamins [14]. Various new therapeutic interventions have acquired FDA approval or
are under clinical trials, including repurposed drugs, antivirals, anti-inflammatory, and
immuno-modulatory agents. However, scarce data exist regarding the drug–drug inter-
actions of these vitamins with the new suggested/approved therapeutic drugs. In this
review, the authors aim to give a systematic overview of all published data regarding the
role of fat-soluble vitamins in SARS-CoV-2, with a special focus on vitamin–drug inter-
actions between the fat-soluble vitamins and the newly approved FDA drug agents for
COVID-19 treatment in an effort to outline an effective therapeutic regimen for cancer and
autoimmune patients infected with COVID-19.

2. Methodology

The authors aimed at exploring the effects of fat-soluble vitamins in cancer and autoim-
mune diseases and their link to COVID-19 infection, as well as the vitamin–drug interaction
in COVID-19 infection. The authors screened the National Library of Medicine (PubMed).
To search databases, the descriptors or keywords used were: “SARS-CoV-2”, “COVID-19”,
“Vitamin A”, “Vitamin D”, “Vitamin E”, “Vitamin K”, “Cancer”, “Autoimmune Disease”,
“Drug-Drug Interactions”, “Vitamin-Drug Interactions”, “Clinical Trials”, “Systemic Lupus
Erythematosus”, “Multiple Sclerosis”, “Rheumatoid Arthritis”, and “Fat-soluble Vitamins”,
to cover as many articles as possible in the literature. Relevant publications with detailed
information were included includingresearch articles, review articles and book chapters
were evaluated and summarized in order to fulfill the purpose of this review article. A
summary of the search strategy from initial search, data retrieval, and screening for eligible
studies to the final included studies is illustrated in Figure 1.
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Figure 1. Flowchart diagram outlining the search strategy from initial search to included studies in
this review.

3. Insight on Patients with Cancer and Autoimmune Disease during the Pandemic

Cancer patients are enlisted as a high-risk group in the population by the WHO,
due to their susceptibility to complications due to their immune-compromised status [15].
However, further classifications of cancer patients according to their current clinical status
were made to establish valid connections between their status and risk of contracting
COVID-19, which is further summarized in Table 1 [5,16,17].

Table 1. Stratification of cancer patients with COVID-19 risk assessment upon infection.

Status of Cancer Patients COVID-19 Risk

Undergoing chemotherapy High risk

Performed surgeries High risk

Prior cancer history High risk

Smoking history High risk

Undergoing immunotherapy High risk

Undergoing radiation therapy Low risk

Reduced T cell counts were considered a characteristic of late-stage cancer patients
infected with the virus. Longer prothrombin time, elevated D-dimer and C-reactive protein
levels also enhance the risk and mortality of cancer patients when encountering COVID-19
infection [18,19]. Moreover, tumors expressing angiotensin-converting enzyme 2 (ACE2)
have been linked to more aggressive COVID-19 consequences in cancer patients, yet studies
validating this link are still required [20]. Therefore, the pandemic has worsened the status
of cancer patients, thus requiring specific protocols for containing the disease [5].

Autoimmune diseases are another class of diseases that have been on the rise and
still require deep investigations, due to the comorbidities and mortalities associated with
this subclass of diseases [21,22]. Rheumatoid arthritis (RA), multiple sclerosis (MS), and
systemic lupus erythematosus (SLE) are among many other autoimmune diseases that have
been showing an alarming increase, yet detailed epidemiological studies are still required
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for their precise monitoring [23–25]. The status of autoimmune patients showed controversy
in the literature, where Druyan et al. have demonstrated that these patients are not at higher
risk during the pandemic, while others reported how certain drugs administered by these
patients make them more susceptible to infection [26,27]. The prognosis of these immuno-
deregulated patients during the pandemic still requires extensive analysis, specifically for
SLE, MS and RA patients [28–30].

Further studies emphasizing the link between COVID-19 and autoimmune diseases
prognosis is much needed due to the complex heterogeneity of these diseases and the
questionable effects of COVID-19 [31]. Moreover, the general assumption that the pandemic
negatively affects these groups of the population need to be deeply investigated to provide
us with statistically significant relationships and correlations [26]. Thorough analysis of
the choice of chronic drugs to be administered during the pandemic is also needed due
to the harmful effects that can be induced if patients are on drugs that further aggravate
SARS-CoV-2 infection [32–34].

4. Therapeutic Approaches Targeting COVID-19

There are significant global efforts underway to identify suitable therapeutic modalities
to treat COVID-19 infection. One of the quick-acting strategies was drug repurposing,
although it had the disadvantage of having poor selectivity and limited value within virus
families. Examples of drugs that were repurposed in COVID-19 therapy are listed in
Table 2 [35].

The WHO launched many interventional clinical trials of several drugs including
antivirals, anticoagulants, anti-inflammatory and some other adjuvant drugs. Remdesivir,
an inhibitor of RNA-dependent RNA polymerase, was the first medication to receive
FDA approval for use in COVID-19 treatment, especially in emergency circumstances. Later,
numerous clinical trials showed that remdesivir inhibits SARS-CoV-2 both in vitro and
in vivo [36]. Moreover, in November 2021, the FDA authorized the use of baricitinib, a Janus
kinase (JAK) inhibitor, in combination with remdesivir for the treatment of hospitalized
COVID-19 patients who need oxygen supplementation [37]. Corticosteroids, in particular,
dexamethasone, has been demonstrated to lower mortality rates and decrease disease
progression, particularly in individuals with severe COVID-19 [38].

The pulmonary microvascular thrombosis caused by SARS-CoV-2 is thought to be the
primary factor causing acute lung injury. Controversial studies exist concerning the use of
heparin as an anticoagulant agent for thrombo-prophylaxis against COVID19-associated
coagulopathy. This was further supported by a retrospective study, which found that
heparin treatment reduced the mortality risk in COVID-19 patients [39]. On the other hand,
a clinical trial did not support the prophylactic anticoagulant intake for ICU-admitted
COVID-19 patients [40]. The recent guidelines of COVID-19 treatment recommended that
anticoagulants and anti-platelets should not be used in non-hospitalized patients [41].

Some other approaches are under clinical investigation to measure their clinical ben-
efit in COVID-19 patients including immunotherapy such as neutralizing monoclonal
antibodies and intravenous immunoglobulins. Due to their capacity to regulate the im-
mune response and cytokine storm linked to severe COVID-19, monoclonal antibodies
have drawn significant attention in clinical research. One of the main cytokines linked to
COVID-19 acute inflammation and the cytokine storm is the interleukin, IL-6.

A decreased mortality rate in COVID-19 hospitalized patients was reported to be
associated with the utilization of monoclonal antibody against IL-6 such as tocilizumab [42].
Tocilizumab and dexamethasone have been licensed by the CDC for use in hospitalized
patients displaying rapid respiratory decompensation as a result of COVID-19 infection.
Another important cytokine is IL-1β, which is crucial in the cytokine storm observed in
COVID-19 infection. According to reports, the IL-1β receptor antagonist, anakinra, reduced
the hyper-inflammation seen in ICU-admitted COVID-19 patients, hence lowering the mor-
tality rate and reducing the need for invasive ventilation [42]. There are currently more than
30 active clinical trials examining the potential advantages of utilizing anakinra as therapy
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against COVID-19. IL-17 is an upstream cytokine to IL-1β and IL-6 cytokines production.
Monoclonal antibodies against IL-17 such as netakimab were reported to significantly
improve the clinical outcome and oxygenation levels through reduction in inflammatory
biomarkers in patients with severe COVID-19 [43]. Phase 2 clinical studies for Secuk-
inumab, another IL-17-specific mAb, are currently taking place. Additionally, clinical trials
are being conducted to examine the use of monoclonal antibodies called mavrilimumab and
lenzilumab against the important pro-inflammatory cytokine, granulocyte-macrophage
colony-stimulating factor (GM-CSF), which has been linked to the immune-pathogenesis
of COVID-19 [44].

Furthermore, monoclonal antibodies against the viral proteins also represent a great
promise in COVID-19 treatment. For instance, monoclonal antibodies against the S protein
of the virus, an essential protein in viral entry and initiation of host immune responses, block
the interaction with ACE2 and consequently prevent viral entry [45]. Recently, the FDA has
authorized the emergency use of eight antiviral drugs, including sotrovimab from GSK and
Vir Biotechnology, cilgavimab and tixagevimab from Astra-Zeneca, bamlanivimab, and
etesevimab from Eli Lilly, and regdanvimab from Celltrion [46]. These anti-viral antibodies
showed a significant decrease of 70–85% in hospitalization or death of patients. The CDC’s
COVID-19 guidelines [41] advised using bamlanivimab and etesevimab together in patients
with mild-to-moderate COVID-19 who are at a high risk of developing a serious illness or
even requiring hospitalization [47].

Another immunotherapeutic approach is the use of intravenous immunoglobulin
(IVIg) that was used to treat many inflammatory and autoimmune disorders, which in-
cludes immunoglobulin G (IgG) obtained from the plasma of healthy donors. Such ther-
apeutic approach could be implemented for the treatment of COVID-19. Although the
precise mechanism of how this approach would help to reduce the cytokine storm associ-
ated with COVID-19 remains unknown, studies showed that critically ill COVID-19 patients
recovered when subjected to high-dose injection of IVIg [48]. Additionally, IVIg may lessen
the cytokine storm by scavenging complement components and preventing the activation
of innate immune cells [48]. Nevertheless, more evidence is required to weigh the risks and
benefits for this therapeutic approach in treatment of COVID-19 patients.

Table 2. Classes of repurposed drugs in COVID-19 infection.

Drug Class Indicated Use Drug Target Impact on COVID-19 References

Antivirals

Daclatasvir/Sofosbuvir HCV NS5A inhibitor Decreased the need for ICU and mortality rates [49]

Danoprevir HCV NS3/4A protease inhibitor Decrease in hospital stay and time to achieve
viral clearance [50]

Favipiravir Influenza RdRp inhibitor Viral clearance in 7 to 14 days and decreased the
need for oxygen [51]

Anti-inflammatory

Imatinib Cancer JAK inhibition - Decreased the duration of mechanical
ventilation

- Lowered the risk of respiratory failure
and death

- Chest CT improvement
- Lowered the need for ventilator,

decreased the severe biomarkers (LDH,
CRP and D dimer)

- Decrease in time of hospitalization and
significant reduction in mortality rate.

[52]

Tofacitinib RA JAK inhibition [53]

Ruxolitinib RA JAK inhibition [54]

Methylprednisolone
Inflammation,
immune system
disorders

Decrease the proinflammatory cytokines [55]

Budesonide Asthma Inhibition of proinflammatory cytokine production [56]

Type I interferons MS Equilibrates the expression of inflammatory mediators [57]

Other drugs

Telmisartan Hypertension Angiotensin receptor blocker Anti-inflammatory effects and reduced overall
mortality and morbidity [58]

Bromhexine Mucolytic TMPRSS2 protease blocker Mortality rate lowered when administered early [59]

Niclosamide Anti-parasitic Modification of endosomal pH and inhibition of
autophagy as well as virus replication

Decreased the recovery time, especially in
patients with comorbidities [60]
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5. Personalized Therapeutic Approaches to Cancer Patients Infected with COVID-19

Several reputable institutions formed specific guidelines that are continuously updated
aiming to reduce the negative outcomes and lethality of cancer during the pandemic, such
as ESMO and the NCCN [61]. Resuming therapy for cancer patients remained debatable
and depended on the ongoing therapeutic approach that varies across cancer types [5].
Likewise, the aggressiveness of cancer in some cases does not allow the patients to stop
therapy without the regression of their clinical state [5]. Therefore, the patient’s condition
and the disease’s stability determine whether or not the therapy must be discontinued [62].

For stable cancer patients, delaying chemotherapy and surgical interventions is rec-
ommended, specifically due to the increased risk of nosocomial transmission through
hospitals [62]. For patients where postponement of therapy is not favored, precise precau-
tions in managing cancer patients is vital to prevent further intricate risks of COVID-19
on these highly susceptible patients [62]. Lastly, in case of actually contracting the dis-
ease, these patients should be closely monitored and provided with rigorous attention
to overcome the possible lethality of the disease [5]. Other treatments have been also
discussed such as administration of intravenous immunoglobulins or blood purification
therapies which need to be further studied to formulate possible means of combatting the
viral infection in these cancer patients [17]. When cancer patients become infected with
COVID-19, they receive personalized regimen strategy as shown in Table 3.

Table 3. Therapeutic strategies used by cancer patients during the pandemic.

Cancer Type Personalized Protocol References

Breast cancer Antiviral combination of darunavir/cobicistat in addition to tazobactam, piperacillin,
levofloxacillin and hydroxychloroquine [63]

Lung cancer Combination of Hydroxychloroquine + azithromycin + lopinavir/ritonavir [64]

Chronic lymphocytic leukemia Hydroxychloroquine, Remdesivir, Lopinavir/Ritonavir, Tocilizumab, Intravenous
immunoglobulin, Corticosteroids, Azithromycin, Convalescent Plasma [65]

Solid and hematological malignancies Azithromycin + Hydroxychloroquine [66]

Multiple cancers Azithromycin, Remdesivir, Tocilizumab, Hydroxychloroquine, Convalescent plasma,
Systemic corticosteroids [67]

Pediatric cancers Broad-spectrum antibiotics, Hydroxychloroquine, Lopinavir/Ritonavir, Oxygen support [68]

6. Personalized Therapeutic Approaches to Autoimmune Patients Infected
with COVID-19
6.1. Systemic Lupus Erythematosus (SLE)

SLE patients are generally more susceptible to viral infections and the complications
associated with the diseases such as diabetes, hypertension, and obesity, which places
them at a stressful position during the pandemic, where their hospitalization and mortality
rates exceeded those of healthy individuals [69]. This is due to the fact that SLE induces
effects on the body similar to COVID-19, where they both share pro-clotting potential
resulting in excessive clotting, which may have dreadful consequences on SLE patients
upon contracting SARS-CoV-2 [6,69]. Additionally, T cell activity is usually impaired in
SLE patients predisposing them to viral infections. This could explain why infections
account for over 30% of SLE patients’ fatalities, with respiratory infections being the most
frequent [70]. More investigative analysis is needed to correlate the risk of contraction of
SARS-CoV-2 in SLE patients, yet more severe symptoms are most likely to predominate in
SLE patients [71].

Immunosuppressive drugs dedicated for SLE patients were not contraindicated during
the pandemic, according to the American College for Rheumatology (ACR), as they did
not appear to affect either the COVID-19 infection cycle or the symptoms [72]. However,
the use of steroids in SLE patients is currently controversial, as both the ACR and WHO
recommend preventing their usage unless deemed obligatory [32]. However, research
revealed that COVID-19-infected SLE patients may benefit from a higher dose of corticos-
teroids [73]. Several studies showed that hydroxychloroquine was ineffective in preventing
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the occurrence of COVID-19 [74,75]. Additionally, cardiovascular side effects associated
with use of hydroxychloroquine were identified in SLE patients [76]. Hyperpigmentation
also was reported in pedatric SLE patients under hydroxychloroquine [77].

6.2. Multiple Sclerosis (MS)

MS is another important autoimmune-related neurodegenerative disease with sev-
eral clinical manifestations that unfortunately result in several varying disabilities in pa-
tients [78]. The general connection between MS and elevated risk of infections was linked
to poor outcomes of COVID-19 patients due to the nature of the drugs usually prescribed
to MS patients including immuno-suppressors [79]. However, this theory has been coun-
teracted with opposing views stating that the low immune status of these patients allows
them to avoid the cytokine storm and serious complications related to COVID-19 [80]. The
stage and age of the MS patient appear to be connected to the COVID-19 severity, where
old age and late stages may be considered risk factors for MS patients [79]. Ocrelizumab
(anti-CD20 medication) had a positive effect on MS patients with COVID-19 due to the
decreased production of IL-6 by B cells. On the other side, medications such as Alem-
tuzumab affected CD52, a cell marker for T and NK cells, and worsened MS symptoms in
COVID-19 patients [81]. The controversial association between MS and COVID-19 should
be further elaborated to develop correct treatment protocols for these patients.

Treatment of MS by disease-modifying treatments (DMTs) has been proven to be a
double-edged weapon for patients during this pandemic [82]. Amor et al. have gathered all
the usual DMTs and linked them to the risk status of patients, and they have listed which
of these drugs can be used during the pandemic and which drugs to discontinue during
the course of COVID-19 infection [82]. It is essential to point out that a recent study of
844 MS patients found a strong correlation between COVID-19 severity in MS patients and
the use of rituximab or ocrelizumab (anti-CD20 mAbs). The same study also revealed that
COVID-19 severity in MS patients was strongly correlated with previous use of methyl
prednisolone shortly before encountering COVID-19 infection [83].

An individualized approach should be tailored to each MS patients when being
infected with COVID-19 to ensure that highest therapeutic output with least risk of ad-
verse events. MS patients under immunosuppressive agents might have altered and
compromised immune system rendering them good candidates to receive antivirals such
as monoclonal antibodies against SARS-CoV-2 virus.

6.3. Rheumatoid Arthritis (RA)

Generally, RA has also been linked to risk of contracting infections and other accompa-
nying disorders, yet the exact role of COVID-19 in aggravating RA is still debatable due to
the common effects induced by both [84]. However, RA patients encountering COVID-19
have slightly higher mortality rates than the general population, which makes them more
vulnerable to the pandemic [85,86]. It is also important to note that the inflammation
state seen in COVID-19 and RA are comparable, leading to the suggestion that various
anti-rheumatic medications, including hydroxychloroquine, tocilizumab, baricitinib, and
anakinra, could be used as treatment options for COVID-19 infection [87]. On the other
hand, the use of certain drugs such as glucocorticoids has been related to more aggressive
COVID-19 consequences to these patients [86]. Therefore, the immune status of patients is
the major issue associating them with a higher risk in acquiring SARS-CoV-2 and a more
aggressive status requiring hospitalization [84].

ACR, National Institute for Health and Care Excellence (NICE), and the Australian
Rheumatology Association have provided in-depth analyses on the usage of anti-RA medi-
cations and endorsed the use of non-steroidal anti-inflammatory drugs (NSAIDs) in the
chronic treatment of RA [88]. In addition, cessation of corticosteroids in patients where these
drugs have been chronically prescribed is not recommended. Due to the NICE regulations,
new prescriptions to RA patients involving corticosteroids may take place, maintaining
the lowest dose possible [88]. Additionally, RA patients currently on immunosuppres-
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sives should continue with their use, unless infected with COVID-19, where the treating
physician outweighs the benefits and downfalls of treatment cessation [89].

Antiviral therapies such as monoclonal antibodies against SARS-CoV-2 are consid-
ered the treatment of choice to RA patients as their immune system is compromised due
to co-administration of immune suppressors. Among those monoclonal antibodies are
Casirivimab and imdevimab [90]. However, the treatment of RA patients infected with
SARS-CoV-2 should be based on the risk factors for poor clinical outcomes, such as the
existence of concomitant illnesses, age (>65 years), the clinical severity of COVID-19 in-
fection, and the level of immunosuppression. A customized regimen should be tailored
to each individual to maximize the therapeutic benefit. For example, RA patients who
are under high dose of immunesuppressants at time of COVID-19 hospitalization would
have a higher risk than benefit if administered IL-6, JAK or IL-1 inhibitor as this drugs will
increase the possibility of serious hospital-acquired infections [91]. In contrast, RA patients
receiving a low dose of methotrexate might be advised to stop methotrexate and receive
IL-6, JAK and IL1 inhibitors in combination with dexamethasone.

7. Impact of Fat-Soluble Vitamins in COVID-19 Prevention and Treatment

Recently nutrients have emerged as the panacea because of their efficacy to treat or
prevent disease and exceedingly low risk levels [92,93]. Thus, it makes sense to research
their potential curative role for COVID-19. Several reviews have concluded that nutrients
are essential to strengthen the immune system throughout a viral infection, especially when
infected with SARS-CoV-2 [15,94,95]. With a special focus on vitamins against COVID-19, a
recent study has found evidence that supports the use of vitamins to treat COVID-19-like
respiratory diseases and requested detailed clinical trials on the effectiveness of vitamins
in treating COVID-19 [96,97]. Additionally, studies showed that fat-soluble vitamins
are crucial in decreasing the overall severity of COVID-19 infection by alleviating the
inflammatory cytokines that causes cytokine storm (Figure 2) [10].
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and treatment of COVID-19. Vitamin A was found to regulate immune responses and cytokine
production in case of SARS-CoV-2 infection while inhibiting the inflammatory reaction and antibodies
production. Vitamin D was found to regulate different types of immune cells and prevents neuronal
damage during and post- SARS-CoV-2 infection. On the other hand, Vitamin E was found to initiate
the production of antioxidants and stimulates several immune responses in an attempt to eradicate
the virus. Vitamin K deficiency was found to be accompanied with severe symptoms of the disease
and thrombosis.
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7.1. Vitamin A

It has long been known that vitamin A possess immunomodulatory roles and is
essential for the appropriate performance of the immune system [98]. For example, lack
of vitamin A has been linked to a higher risk of death from respiratory infections [98].
Hence, it is essential to investigate the role of vitamin A against COVID-19. A recent
review using bioinformatics tools identified the vitamin A associated genes and carried out
computational assays to evaluate the effect and mechanism of action of vitamin A against
COVID-19 [99]. Generally, its mechanism of action against SARS-CoV-2 consists of several
effects such as enrichment of the immune reaction and inhibition of inflammatory reaction.
In addition, vitamin A has an effect on a number of cellular responses to the virus, including
cytokine release, immunoglobulin synthesis, acute and chronic inflammatory responses, as
well as a number of other immunological processes [99]. Further clinical trials are required
to explore the importance of vitamin A in the immune system and cellular immunological
responses and investigate its therapeutic or preventative effect against COVID-19. This is
besides the impact of vitamin A in most cancer types and autoimmune diseases, which has
been previously studied and reviewed [100–117] and is summarized in Figure 3.
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Figure 3. Effect of vitamin A in different cancer types and autoimmune diseases. Vitamin A has potent
anticancer activity against different solid and non-solid malignancies such leukemia, lymphoma,
breast, cervical, gastric, bladder, ovarian, colorectal, lung, liver and pancreatic cancers. Vitamin A
was also found to have potent immunomodulatory roles that would prevent/treat/alleviate the
symptoms of several autoimmune diseases such as multiple sclerosis, systemic lupus erythematosus
and thyroiditis.

7.2. Vitamin D

The impact of vitamin D on COVID-19 has been examined in a number of reviews
and clinical trials, where vitamin D supplements were reported to lower the risk of infec-
tion and could be taken in higher doses in COVID-19 infection [118]. The main role of
vitamin D against COVID-19 is being an immunosuppressant that inhibits the cytokine
release syndrome which is one of the symptoms of severe COVID-19 [119]. COVID-19
patients suffering from pneumonia showed great benefit from the intake of vitamin D
that was found to play a significant effect on the cytokine storm [119]. Moreover, vita-
min D prevents Th1 and Th17 cell proliferation and the subsequent release of cytokines
including IFN-γ, TNF-α, IL-1, IL-2, IL-12, IL-23, and IL-17 [119]. Additionally, vitamin D
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functions as a mediator for the differentiation of Th2 cells and the release of their cytokines
(IL-4 and IL-10), which are critical in preventing organ damage caused by severe COVID-19
infection [119]. Furthermore, there are several clinical trials investigating the significance
of vitamin D in the prevention and treatment of autoimmune diseases because of its im-
munomodulatory function. Another important role of vitamin D against COVID-19 is its
neuroprotective effect [119]. Although headaches and loss of taste and smell are common
COVID-19 symptoms, they have not been well investigated. It is possible that SARS-CoV-2
affects the neurons and result in nerve damage leading to the neurological symptoms
mentioned above. Moreover, vitamin D regulates the, neurotrophins which are vital for
the survival and maintenance of the neurons and promote the expression of brain-derived
neurotrophic factor, nerve growth factor, and p75NTR neurotrophin receptor [119]. The
immunomodulating role of vitamin D is also considered a mechanism by which it acts as
a neuroprotective agent [119]. Additionally, vitamin D3, has been suggested to enhance
natural killer (NK) cells’ biological activities, particularly their capacity for cytolysis. These
medications may also restore the NK cells’ antiviral activity, thus protecting the COVID-19
infection and its complications [120]. For the reasons mentioned previously and others,
many reviews recommend the frequent supplementation of vitamin D to prevent and treat
COVID-19 [118,119,121]. Additionally, vitamin D has a critical role in most cancer types
and autoimmune diseases, which has been previously studied and reviewed [122–137] and
is summarized in Figure 4.
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Figure 4. Effect of vitamin D in different cancer types and autoimmune diseases. Vitamin D has
potent anticancer activity against different solid and non-solid malignancies such leukemia, lym-
phoma, breast, prostate, gastric, melanoma, endometrial, colorectal, lung, liver, pancreatic and
bladder cancers. Vitamin D was also found to have potent immunomodulatory roles that would
prevent/treat/alleviate the symptoms of several autoimmune diseases such as multiple sclerosis,
rheumatoid arthritis, and Grave’s disease.
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7.3. Vitamin K

Vitamin K2 and the maintenance of serum 25-hydroxyvitamin D levels have been
recently linked to death in COVID-19 patients, as reported by Goddek S., where there was
an association of the vitamin levels with calcium deposition in bones, thus increasing its
nutritional potential [138]. A previous study linked vitamin K to regressive thrombotic
properties and inflammatory cytokine storm in COVID-19 patients where a deficit in the
vitamin was a feature of serious COVID-19 cases. This further emphasizes the potential
protective role of the vitamin, specifically during the pandemic [139]. Moreover, Janssen
et al. further reported the association between this vitamin and aggressive COVID-19 cases
due to its role in stimulating thrombogenic properties. Further emphasis on its nutritional
positive value was also shown in a region in Japan which is known for a dish rich in vitamin
K2 [140]. This was further elaborated where a certain polymorphism involving the low
recycling of vitamin K was associated with its advantage during COVID-19 in East Asian
populations, providing unique insights on the benefit of the VKORC1-1639A allele in a
pandemic setting [140].

A diminished activation of endothelial protein S and presence of other hepatic proco-
agulant factors and the matrix Gla protein (MGP), was linked to anti-thrombotic activity
and vitamin K insufficiency [141]. A novel relationship between inactive MGP levels and
respective vitamin K levels allowed its relation to COVID-19, while the increase in active
MGP levels reflected the impact of vitamin K in the inhibition of the lethal effects of the coro-
navirus and the induction of elastic fibre damage [141]. Additionally, a synergy between
vitamin D and vitamin K was necessary, thus necessitating the administration of vitamin K
in severe COVID-19 patients prior to vitamin D supplementation [141]. Vitamin K was
reported to have positive impacts in most cases of cancer and autoimmune diseases, which
has been previously studied and reviewed [142–158] and is summarized in Figure 5. The
emerging roles of vitamin K1 and K3 have also been noted due to the notable effects in-
duced by this subclass of vitamins in regulation of tyrosine kinases and their downstream
oncogenic pathways, as well as their regulatory effect on certain transcription factors [159].
The exact mechanism underlying its anti-cancer activity was thoroughly discussed by
Mamede et al. [160].

Life 2022, 12, x FOR PEER REVIEW 13 of 28 
 

 

COVID-19 in East Asian populations, providing unique insights on the benefit of the 

VKORC1-1639A allele in a pandemic setting [140]. 

A diminished activation of endothelial protein S and presence of other hepatic 

procoagulant factors and the matrix Gla protein (MGP), was linked to anti-thrombotic 

activity and vitamin K insufficiency [141]. A novel relationship between inactive MGP 

levels and respective vitamin K levels allowed its relation to COVID-19, while the increase 

in active MGP levels reflected the impact of vitamin K in the inhibition of the lethal effects 

of the coronavirus and the induction of elastic fibre damage [141]. Additionally, a synergy 

between vitamin D and vitamin K was necessary, thus necessitating the administration of 

vitamin K in severe COVID-19 patients prior to vitamin D supplementation [141]. Vitamin 

K was reported to have positive impacts in most cases of cancer and autoimmune diseases, 

which has been previously studied and reviewed [142–158] and is summarized in Figure 

5. The emerging roles of vitamin K1 and K3 have also been noted due to the notable effects 

induced by this subclass of vitamins in regulation of tyrosine kinases and their 

downstream oncogenic pathways, as well as their regulatory effect on certain 

transcription factors [159]. The exact mechanism underlying its anti-cancer activity was 

thoroughly discussed by Mamede et al. [160]. 

 

Figure 5. Effect of vitamin K in different cancer types and autoimmune diseases. 

Vitamin K has potent anticancer activity against different solid malignancies such breast, renal cell carcinoma, 
melanoma, bladder, ovarian, colorectal, lung, liver and prostate cancers. Vitamin K was also found to have po-
tent immunomodulatory roles in multiple sclerosis and rheumatoid arthritis. 

7.4. Vitamin E 

Supplementation of Vitamin E along with vitamins C and D has been stated to be 

critical to the well-being of individuals as well as those infected with COVID-19 [92]. This 

goes back to the well-known anti-oxidant properties of vitamin E and its impact on 

stimulating the immune system and subsequent protection from infections [92]. Further 

exploration of these immune-boosting properties in COVID-19 patients is currently 

lacking, yet the general addition of vitamin E to other vitamins carries huge nutritional 

value [92]. Such properties are much needed by the elderly patients, as their immune 

Figure 5. Effect of vitamin K in different cancer types and autoimmune diseases. Vitamin K has potent
anticancer activity against different solid malignancies such breast, renal cell carcinoma, melanoma,
bladder, ovarian, colorectal, lung, liver and prostate cancers. Vitamin K was also found to have potent
immunomodulatory roles in multiple sclerosis and rheumatoid arthritis.
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7.4. Vitamin E

Supplementation of Vitamin E along with vitamins C and D has been stated to be criti-
cal to the well-being of individuals as well as those infected with COVID-19 [92]. This goes
back to the well-known anti-oxidant properties of vitamin E and its impact on stimulating
the immune system and subsequent protection from infections [92]. Further exploration
of these immune-boosting properties in COVID-19 patients is currently lacking, yet the
general addition of vitamin E to other vitamins carries huge nutritional value [92]. Such
properties are much needed by the elderly patients, as their immune responses are known
to reduce over time [161]. Additionally, low vitamin E levels in SARS-CoV-2-infected preg-
nant women was also noted by Erol et al., owing to the oxidative stress induced by the
virus, which contributes to negative perinatal effects [96]. Moreover, supplementation of
vitamin E to another set of nutrients in obese patients has been linked to more positive
outcomes in COVID-19 patients, due its previously mentioned immune-promoting prop-
erties [162]. Additionally, an animal-based study aimed to identify the role of vitamin E
in Keshan disease, where more favorable outcomes were associated with the availability
of the vitamin [163]. A similarly purposed study also related the intake of the vitamin to
improved outcomes in mice infected with the influenza virus [164]. The role of vitamin E in
human immunodeficiency virus (HIV) was also required to unravel the potential anti-viral
effects of its intake [165]. Additionally, the Newcastle disease virus (NDV) is another viral
infection where vitamin E was identified to have a great dietary potential due to its regres-
sive effects on the manifestations of the disease [166]. Additionally, the potential anti-viral
properties of this vitamin were further demonstrated due to its unique anti-oxidant role
with a preventive value in handling recurrent herpes and human papillomavirus [167].
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Figure 6. Effect of vitamin E in different cancer types and autoimmune diseases. Figure 6. Effect of vitamin E in different cancer types and autoimmune diseases. Vitamin E has
potent anticancer activity against different solid malignancies such breast, prostate, bladder, pan-
creatic, ovarian, colorectal, melanoma and lung cancers. Vitamin E was also found to have potent
immunomodulatory roles that would prevent/treat/alleviate the symptoms of several autoimmune
diseases such as multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis and systemic
lupus erythematosus.
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On the other hand, possible preventive intake of vitamin E was shown to provide
beneficial effects on cancer patients due to the positive impacts associated with reduced
tumorigenesis in animal models [168]. Moreover, different precursors of vitamin E have
been even linked to more predominant anti-carcinogenic effects [169]. However, clinical
trials aiming to validate such effects in a clinical setting failed to associate the vitamin with
positive effects on cancer patients, which led to a controversy on the role of these potential
agents in carcinogenesis [170]. However, isoforms of vitamin E have been recently gaining
popularity in the literature, due to their ability to restore the sensitivity of resistant tumors to
treatment [171]. The potential effects of vitamin E in various cancer types and autoimmune
diseases have been previously investigated [169,172–190] and are summarized Figure 6.

8. Drug–Drug Interactions of Fat-Soluble Vitamins and COVID-19
Therapeutic Agents

The main goal of this review is to evaluate the risk-to-benefit ratio of vitamin supple-
mentation to COVID-19 patients as part of their treatment plan. That is why it is essential
to highlight any potential drug interactions between the approved COVID-19 treatment
modalities and the four different fat-soluble vitamins.

8.1. Drug Interactions of Vitamin A with COVID-19 Therapeutic Agents

As mentioned earlier, vitamin A was identified to exhibit a potential therapeutic effect
in COVID-19 patients, where it decreased the incidence of infection and shortened the
duration of the disease [191]. Previous studies reported multiple mechanisms of action of
vitamin A in infections including enhancement of T cell migration to the thymus as well as
promotion of T cell activation and antibody production by B cells, which opens the door
to possible interactions of vitamin A and immunomodulatory drugs such as monoclonal
antibodies [192–196]. Furthermore, vitamin A is an inhibitor of CYP2C19, which is involved
in the metabolism of some drugs involved in COVID-19 treatment [197].

Interferon type 1A was a drug that has been postulated to benefit COVID-19 patients
among many other viral infections. Vitamin A was known to carry a beneficial role through
mounting the therapeutic efficacy of type 1 interferon [198]. Another study suggested that
vitamin A has a pivotal role in decreasing the adverse events of some ACE inhibitors [199].
However, many drug interactions still need to be further investigated with this vitamin.

8.2. Drug Interactions of Vitamin D with COVID-19 Therapeutic Agents

Given that vitamin D may affect the metabolism of many medications that depend on
CYP3A4 activation while the CYP3A4 gene contains a vitamin D response element, multiple
studies into the vitamin D–drug interactions was deemed essential [200,201]. Given that
many of the suggested anti-COVID-19 drug agents are activated/metabolized by CYP3A4,
this highlights the importance of studying the drug interactions related to vitamin D [202].
Ivermectin, for instance, has been suggested to have antiviral effect against COVID-19 and
is metabolized via CYP3A4, hence a 2 h delay between the administration of ivermectin and
vitamin D has been advised [203]. Another medication suggested in COVID-19 therapy due
its anti-inflammatory effects is colchicine [204]. Additionally, colchicine is a substrate for
CYP3A, and hence, inducers of CYP3A such as vitamin D might lead to a sub-therapeutic
dose of colchicine [205]. In contrast, other medications are categorized as CYP3A inhibitors,
such as the combination of lopinavir and ritonavir, which is expected to raise the plasma
concentrations of any medication that is processed by CYP3A such as vitamin D [205].
This supports another study’s findings, where treatment with lopinavir/ritonavir for
48 weeks dramatically increased serum levels of vitamin D [206]. On the other hand,
elevated cytokine levels in COVID-19 are known to downregulate the expression of hepatic
enzyme CYP450 [207]. Vitamin D and immunomodulatory agents such as monoclonal
antibodies and some antiviral drugs might hold a possible synergistic effect in restoring
the CYP450 enzymes [205]. This goes in line with a study that concluded that combinations
of vitamin D and remdesivir, enhanced treatment results in the fight against COVID-19
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infection [208]. Furthermore, a study demonstrated that the use of monoclonal antibodies
as anakinra, infliximab, canakinumab, sarilumab, and tocilizumab restored CYP450 enzyme
levels back to normal [205]. Particularly in COVID-19 patients who are continuing to receive
therapeutic administration of drugs with a narrow therapeutic index that are substrates
for CYP450 enzymes such as warfarin, a potential synergistic effect of these drugs on the
restoration of enzymes should be thoroughly investigated.

Previously, the antimalarial drug hydroxychloroquine was used to treat autoimmune
diseases such as SLE. Patients receiving hydroxychloroquine had significantly increased
levels of vitamin D compared to those who are not taking it [209]. A study found that
the activation of CYP3A4 by corticosteroids can lead to a reduction in vitamin D lev-
els [210,211]. On the contrary, another study showed that vitamin D enhanced the efficacy
of corticosteroids and attenuated their side effects [212].

8.3. Drug Interactions of Vitamin K with COVID-19 Therapeutic Agents

A high mortality rate in COVID-19 infection was significantly associated with the
impaired coagulation process. The recent guidelines of COVID-19 treatment recommended
that anticoagulants and antiplatelets should not be used in non-hospitalized patients [41].
However, in ICU patients who exhibit coagulopathy, warfarin and heparin could be pre-
scribed to inhibit organ dysfunction and decrease mortality rates [32,41]. Because of its
narrow therapeutic index, warfarin is considerably sensitive to variations in the plasma
concentrations of vitamin K, and thus, its ability to treat certain conditions is inhibited by
high vitamin K intake [213]. However, other controversial studies investigated the inter-
actions of vitamin K and warfarin, where a study concluded that normal daily intake of
vitamin K does not affect warfarin efficacy [214]. On the other hand, a study concluded that
multivitamin supplements may affect warfarin anticoagulation in susceptible patients [215].
Thus, this debate obliges the need for more studies to investigate the vitamin K dose change
in patients administering warfarin.

8.4. Drug Interactions of Vitamin E with COVID-19 Therapeutic Agents

Although vitamin E is well known for its antioxidant properties, a study found a link
between excessive vitamin E intake and an increased risk of gastrointestinal cancer, heart
failure, and overall cause of death [216]. Moreover, a study concluded that potent antioxi-
dant supplementation such as vitamin E could lower the efficacy of some chemotherapeutic
agents such as alkylating agents, platinum compounds, or anthracycline which exert their
therapeutic effect by generating active oxygen species [217]. Imatinib is a chemotherapeutic
agent that was suggested to be repurposed for COVID-19 therapy. Thus, caution must be
taken for cancer patients infected with COVID-19 while administering vitamin E to prevent
drug interaction and a decrease in chemotherapeutic efficacy.

P-glycoprotein (P-gp), or multidrug resistance protein 1 (MDR1), is known to increase
the efflux of some drugs limiting the intestinal absorption and bioavailability of these drugs.
According to several in vitro studies, vitamin E at high concentrations may potentially
enhance the activity of P-gp [218]. Lopinavir, ritonavir and sofosbuvir/daclatasvir are
among the repurposed drugs suggested for treatment of COVID-19, with their efflux
mediated by P-gp [219,220]. Therefore, the enhancement of P-gp with vitamin E might
reduce the plasma concentration of lopinavir, ritonavir or sofosbuvir/daclatasvir, thus
decreasing their therapeutic efficacy. On the other hand, vitamin E holds a beneficial drug
interaction with ritonavir, as studies reported that vitamin E deficiency might aggravate
ritonavir-induced hyperlipidemia through an increase CD36 expression [221]. However, to
confirm the advantage of co-administration of ritonavir and vitamin E, additional in vivo
trials are required.

No data from in vivo studies have been published to support the fact that vitamin E
might affect intestinal drug metabolism. In guinea pigs administered with vitamin E
for six weeks, the expression of the CYP3A4 protein was found to be unaltered [222].
Likewise, rats fed a diet high in vitamin E for two weeks had the same level of activity
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of the metabolic enzyme UGT1A1 as control animals [223]. A liver-specific transporter
called organic anion transporting polypeptide (OATP) is known to facilitate the transport of
different medications to the liver from the blood. There are conflicting studies on the effect
of vitamin E on organic anion transporter 1 (OAT1) activity. Some studies demonstrated
that feeding guinea pigs a vitamin E-rich diet for six weeks in the presence or absence
of the OATP substrate had no effect on hepatic OATP expression or activity [222]. In
contrast, a study found that rats given large doses of vitamin E had lower mRNA levels of
hepatic OATP than the control group. Favipiravir, an RNA-dependent RNA polymerase
inhibitor, is used to treat COVID-19 as a repurposed medication [224]. Additionally, the
prodrug favipiravir is metabolized to an inactive metabolite and eliminated in the urine.
Additionally, favipiravir inhibits OAT1 and OAT3, which aid in the kidneys’ ability to
excrete uric acid [225]. Therefore, the inhibition of OAT1 with favipiravirquestions the
concomitant use of this drug with vitamin E, but further research is required to obtain a
firm conclusion about the risk of taking vitamin E and favipiravir together.

It is also worth mentioning that vitamin E is known to alter the metabolism of vi-
tamin K as they are metabolized through the same pathway [226,227]. In agreement
with that, studies have concluded that vitamin E decreased blood coagulation and in-
creased bleeding tendency in human patients receiving vitamin E simultaneously with
aspirin or warfarin [228]. Although it appears that vitamin E might hold an advantage
for COVID-19 patients, especially against thromboprophylaxis, it still holds a serious
drug interaction if co-administered with other anticoagulants such as heparin. In other
words, COVID-19 patients taking heparin should be warned of bleeding tendency if co-
administered with vitamin E. On another note, corticosteroids have been used as anti-
inflammatory agents in COVID-19 therapy. A study has concluded that co-administration
of vitamins D and E can improve the effectiveness of oxygen-dependent phagocytosis
mechanisms and inhibit immunosuppressive effects of prednisolone [229]. The latter study
proposes a clear interaction between corticosteroid administration and vitamin E.

9. Expert Opinion, Conclusions and Future Perspectives

Despite the immense efforts carried out by scientists for the discovery of new therapeu-
tic modalities for treating COVID-19, and the evidence-based beneficial role of fat-soluble
vitamins in preventing the cytokine storm associated with the severity of COVID-19, lit-
tle is still known about the vitamin–drug interactions of fat-soluble vitamins and newly
FDA-approved COVID-19 medications. Additionally, the pharmacodynamic and pharma-
cokinetic changes caused by these vitamins might alter the metabolism of COVID-19 therapeutic
drugs. Such interactions could have negative consequences and hinder patients from taking
the full therapeutic benefit out of the new modalities, particularly immunocompromised
patients such as cancer and autoimmune patients. Thus, this review highlighted the critical
vitamin–drug interactions between fat-soluble vitamins and the FDA-approved COVID-19
treatments and focused on personalized COVID-19 treatment protocols for cancer and
autoimmune patients. This will help weigh the risks and benefits when tailoring person-
alized management protocols to such high-risk patients. Nevertheless, further research
must be carried out to decipher the possible vitamin–drug interactions to maximize the
benefits of these vitamins and prevent negative adverse events. Such information would
be of great use by clinicians who will apply the concept of personalized medicine and
implement personalized protocols and guidelines for preventing vitamin–drug interactions,
particularly for high-risk patients such as autoimmune and cancer patients.

Currently, there are more than 200 clinical trials investigating the supplementation of
vitamins in COVID-19 infection (https://clinicaltrials.gov/ct2/results?term=vitamins&
cond=COVID-19 (accessed on 15 October 2022). Only one clinical trial (NCT04709744)
focused on the impact of vitamin D supplementation on SLE patients during the COVID-19
pandemic. However, to date, no results have been posted or published from this clinical
trial. Therefore, more clinical trials are needed to study the vitamin–drug interactions in
order to draw a firm conclusion on the use of these vitamins during the course of COVID-19

https://clinicaltrials.gov/ct2/results?term=vitamins&cond=COVID-19
https://clinicaltrials.gov/ct2/results?term=vitamins&cond=COVID-19
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infection. Additionally, studies are needed to study the drug–drug interactions between
chronic medicines given to cancer/autoimmune patients and novel COVID-19 therapeutic
modalities. This is in addition to exploring the prophylactic roles of these fat-soluble
vitamins in COVID-19 infection, especially in immunocompromised patients. Furthermore,
clinical studies should address the interactions between the forementioned vitamins in
COVID-19-vaccinated individuals and specifically autoimmune and cancer patients.
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