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Abstract: Narrowband photodetectors (PD) established in the near-infrared (NIR) wavelength range
are highly required in a variety of applications including high-quality bioimaging. In this simulation
study, we propose a filter-less narrowband PD based on the architecture of perovskite/organic het-
erojunction. The most decisive part of the photodetector is the hierarchical configuration of a larger
bandgap perovskite material with a thicker film followed by a lower bandgap organic material with
a narrower layer. The design of the structure is carried out by TCAD numerical simulations. Our
structure is based on an experimentally validated wideband organic PD, which is modified by invok-
ing an additional perovskite layer having a tunable bandgap. The main detector device comprises
of ITO/perovskite (CsyFA1−yPb(IxBr1−x)3)/organic blend (PBDTTT-c:C60-PCBM)/PEDOT:PSS/Al.
The simulation results show that the proposed heterojunction PD achieves satisfactory performance
when the thickness of perovskite and organic layers are 2.5 µm and 500 nm, respectively. The designed
photodetector achieves a narrow spectral response at 730 nm with a full width at half-maximum
(FWHM) of 33 nm in the detector, while having a responsivity of about 0.12 A/W at zero bias. The
presented heterojunction perovskite/organic PD can efficiently detect light in the wavelength range
of 700 to 900 nm. These simulation results can be employed to drive the development of filter-less
narrowband NIR heterojunction PD.

Keywords: narrowband; near-infrared; perovskite; organic; TCAD; responsivity; FWHM

1. Introduction

Narrowband photodetectors (PDs) have been broadly utilized in various application
fields like biomedical imaging, virtual reality, navigation aid, full-weather robots, and many
others [1–5]. In these PDs, light can be detected inside a specific wavelength range, and
there is no light response at other wavelengths. The existing commercial market of PDs is
dominated by expensive crystalline inorganic semiconductor structures, which are usually
integrated with optical filters [6]. Meanwhile, organic semiconductors can compete the

Crystals 2022, 12, 1033. https://doi.org/10.3390/cryst12081033 https://www.mdpi.com/journal/crystals

https://doi.org/10.3390/cryst12081033
https://doi.org/10.3390/cryst12081033
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/crystals
https://www.mdpi.com
https://orcid.org/0000-0001-6602-7343
https://orcid.org/0000-0002-0316-0961
https://orcid.org/0000-0001-8556-1832
https://doi.org/10.3390/cryst12081033
https://www.mdpi.com/journal/crystals
https://www.mdpi.com/article/10.3390/cryst12081033?type=check_update&version=2


Crystals 2022, 12, 1033 2 of 12

existing technologies because they are lightweight and flexible besides their low-cost and
semi-transparent nature. In addition, organic materials have high absorption coefficients
and can effectively be designed as absorber materials at thickness lower than only 1 µm.
Additionally, the absorption spectrum of organic materials can be modulated by modifying
their molecular configurations. These promising features make organic PDs prospective
contenders for the expanding need for smarter and safer detectors [7–9].

Most organic PDs are composed of a blend of a polymer donor and fullerene acceptor
molecules as the photoactive thin film [10]. Although broadband organic PDs can be
commonly attained [11–13], it is not that easy to achieve narrowband organic PDs due to
the relatively wide photon harvesting range of organic semiconductors [14,15]. Moreover,
organic–inorganic hybrid perovskite materials are developing candidates that have been
extensively used in PDs [16]. Some of the advantages of perovskites are their pronouncing
optical and electrical properties, involving a direct bandgap, large extinction coefficient, and
high carrier mobility [17,18]. It has been shown that by combining organic–inorganic hybrid
perovskites and an organic heterojunction comprising of donor–acceptor materials can
push this type of PDs to cover the near-infrared range resulting in broadband PDs [19,20].
A hybrid PD with perovskite/polymer, which is based on CH3NH3PbI3-xBrx/PTB7 with
tunable spectral response in the range 680–710 nm, has been reported [21]. Furthermore, it
has been demonstrated that a hybrid PD with perovskite/polymer heterojunction based
on CH3NH3PbI3/PCPDTBT:PC71BM can achieve a visible-blind narrowband NIR detec-
tion [22].

Notably, the biological tissues are primarily comprised of hemoglobin and water that
absorb wavelengths below 650 nm and above 900 nm [23]. Consequently, in order to
prevent the light absorption of biological tissue, a PD operating in the range 650 to 900 nm
is required [24]. Therefore, our aim in this work is to design a narrowband PD that is based
on perovskite/organic heterojunction to provide an optimal detection region. The design
idea is based on selecting a relatively wide band gap perovskite that can fully absorb the
incident photons whose wavelengths are smaller than the perovskite cutoff wavelength [25].
This can be accomplished if the perovskite layer has a wider thickness and higher defect
density than the organic layer [26]. When the light passes through the perovskite, the
visible light is absorbed while the NIR light will be transferred to the organic layer due
to the transparency of the perovskite layer in the NIR region. So, the organic material
will respond to the light spectrum between the cutoff wavelengths corresponding to the
organic and perovskite materials. Next, the photoexcited charge carriers in the organic
layer will be separated by the produced built-in electric field, which is a process that is
nearly not impacted by the defects in the organic film. This perovskite/organic PD design
does not require a complex filtering system and may operate under zero bias due to the
presence of a built-in electric field at the heterojunction. So, it can be used as a filter-free
and self-powered device.

In order to design and reveal the internal physics of an optoelectronic device, a TCAD
simulation meticulously addressing the basic optical, electrical, and semiconductor charac-
teristics is enormously valuable. Such an advanced simulation can accomplish an accurate
performance evaluation of various PDs and provide exact physical pictures that reflect the
detailed device operation. Compared to the complex and time-consuming experiments, a
highly effective and precise simulation can be extremely beneficial for predicting and opti-
mizing the device performance in a convenient way. In this work, numerical simulations
were carried out using Silvaco TCAD device simulator package [27]. We performed finite
element simulations enabling electro-optical modeling of our proposed PD. Currently, such
a simulation of narrowband perovskite/organic PD has never been reported.

This work thus focuses on the design and numerical analysis of a narrowband per-
ovskite/organic PD. The selected perovskite material is CsyFA1−yPb(IxBr1−x)3 whose
bandgap can be tuned in the range 1.5 to 1.8 eV [28]. Meanwhile, the organic material is a
blend between the donor polymer PBDTTT-c and the acceptor C60-PCBM. This organic
material has a band gap of about 1.45 eV, and PDs based on this organic semiconductor
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have been experimentally validated as wideband PDs [29]. Thus, a calibration step will
be presented to confirm the physical and geometrical parameters used in simulation by
comparing the TCAD simulation results versus the experimental data [29]. Then, we will
study the impact of the energy gap of the perovskite material to get the optimum choice
based on responsivity (R) and full width at half-maximum (FHWM) parameters. Moreover,
the impact of reverse bias and organic thickness and trap density is investigated.

2. Simulation Methodology and Device Model

To build our structure model and simulate the electrical and optical characteristics
of the proposed PD, the Silvaco TCAD device simulator module is utilized. The involved
numerical simulation is based on the discretized solution of the basic equations of charge
transport in semiconductors like Poisson’s equation, continuity, and transport equations.
Firstly, given an illuminated input source, the optical intensity profiles within the PD device
are calculated. Then, the intensity profiles are transformed into photogeneration rates,
which are integrated into the generation terms in the continuity equations. In optoelectronic
device simulation, two separate models are computed concurrently at each bias. These
models are the optical ray tracing and the photogeneration model. In the first model, the
real component of the refractive index is adopted to evaluate the optical intensity, while,
in the second model, the extinction coefficient is employed in the calculation of a new
carrier concentration. An electrical simulation is then accomplished to acquire the required
terminal currents [30], where the drift diffusion model is employed to simulate the transport
properties. The physical models used in simulation are as follows. The Shockley–Read–Hall
(SRH) recombination model and Poole–Frenkel mobility model were enabled. Notably,
the SRH recombination mechanism arises from the recombination of electron–hole pairs
through defect levels within the energy bandgap of the simulated material [31,32].

2.1. Basic Photodetector Structure

The schematic diagram of the proposed detector is displayed in Figure 1a. In the
simulation process, the perovskite/organic heterojunction PD structure was generated by
the device simulator on a 2D grid as displayed in Figure 2b. The corresponding energy
levels of the distinct layers are displayed in Figure 1c, while the energy band diagram
at dark condition is plotted in Figure 1d. As depicted in the schematic figure, the basic
structure of the PD is ITO/PEIE followed by CsyFA1−yPb(IxBr1−x)3. This perovskite
material was chosen because it is more stable than MA-based compounds [33] and due to
its bandgap tunability [28]. Thus, CsyFA1−yPbIxBr(1−x)3 can serve as a suitable partner in
the heterojunction detector combining with a proper organic material. Light is incident
from the ITO side and passes through the perovskite film where photons of wavelengths
smaller than a certain designed wavelength are suppressed (see Figure 1c). The active
organic film is PBDTTT-c:C60-PCBM (donor/acceptor). The thickness of the perovskite
and organic layers is set as 2.5 µm and 500 nm, respectively. The hole transport layer (HTL)
is PEDOT:PSS with a p-doping of about 1 × 1018 cm−3.

A summary of the technological and physical parameters of the PD layers is pre-
sented in Table 1 [28,29,34–39]. Further, Table 2 lists the main defect parameters inside
the perovskite and organic blend layers [24,29]. The details and criteria of choosing these
parameters are explained hereafter. Moreover, the refractive indices and distinction coeffi-
cients, which are extracted from experimental reports, are displayed in the Supplementary
Materials [28,29,37]. It should be pointed out here that our proposed PD structure is based
on a fabricated wideband organic PD. The modification made here is to add a thick per-
ovskite layer in order to engineer the band of detection. Before proceeding to present
our PD results, a validation of the parameters of the materials used in our PD design is
conducted. This is done by comparing TCAD simulation results with those obtained from
measurements of the fabricated organic PD [29]. The Silvaco script of this part is listed in
the Supplementary Materials.



Crystals 2022, 12, 1033 4 of 12

Crystals 2022, 12, x FOR PEER REVIEW 4 of 12 
 

 

PD results, a validation of the parameters of the materials used in our PD design is con-

ducted. This is done by comparing TCAD simulation results with those obtained from 

measurements of the fabricated organic PD [29]. The Silvaco script of this part is listed in 

the Supplementary Materials. 

  
(a) (b) 

  

(c) (d) 

Figure 1. Basic structure and energy levels of the proposed narrowband near-infrared perovskite/or-

ganic photodetector. (a) Schematic illustration of the structure of PDs, (b) generated structure from 

the device simulator, (c) energy level diagram of the different layers, and (d) energy band diagram 

at dark condition showing conduction and valence edges. 

  
(a) (b) 

Figure 2. Calibration of experimental wideband organic PD (a) illuminated J-V characteristics (530 

nm and 0.3 W/m2). The main structure of the PD is shown in the inset and (b) EQE characteristics. 

  

 
  

  

  

 

          Al 
 

PEDOT:PSS 

PBDTTT-c:  

C60-PCBM 

 

 

CsyFA1−yPb(IxBr 1−x)3 

 

 

ITO/PEIE 

 

 

 
 

-4.3 eV 

-3.3 eV 

-5.15 eV 

-3.7 eV 

-4.2 eV 
  

-4.9 eV 

-3.9 eV 

ITO            Perovskite          Organic    PEDOT:       Al 

/PEIE                                       Blend         PSS 

Figure 1. Basic structure and energy levels of the proposed narrowband near-infrared per-
ovskite/organic photodetector. (a) Schematic illustration of the structure of PDs, (b) generated
structure from the device simulator, (c) energy level diagram of the different layers, and (d) energy
band diagram at dark condition showing conduction and valence edges.
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Table 1. Basic parameters of the narrowband PD layers [28,29,34–39].

Parameters ITO/PEIE CsyFA1−yPb(IxBr1−x)3
PBDTTT-c:
C60-PCBM PEDOT:PSS

Thickness (nm) 110 2500 500 100
Energy gap (eV) 3.60 1.62–1.80 1.45 1.60
Electron affinity (eV) 4.20 3.90 3.70 3.30
Relative permittivity 9.0 7.0 3.6 3.0
Electron mobility (cm2/V.s) 100 10 6 × 10−4 5 × 10−4

Hole mobility (cm2/V.s) 25 10 1 × 10−3 5 × 10−4

CB effective density of states (cm−3) 2.2 × 1018 2.75 × 1018 1.0 × 1020 2.2 × 1018

VB effective density of states (cm−3) 1.8 × 1019 3.90 × 1018 1.0 × 1020 1.8 × 1019

Table 2. Bulk defects parameters in the perovskite and organic layers [24,29].

CsyFA1−yPb(IxBr1−x)3
PBDTTT-c:
C60-PCBM PBDTTT-c:C60-PCBM

Defect type Donor Donor Neutral
Electron and hole
capture cross section 1 × 10−13 cm2 5 × 10−16 cm2 1 × 10−15 cm2

Trap energy position Mid-gap 290 meV
(Above blend HOMO) Mid-gap

Total density (Nt) 1 × 1015 cm−3 2.7 × 1016 cm−3 2 × 1014 cm−3

2.2. Calibration of the Fabricated Wideband Organic PD

The experimental device, used in calibration, consists of multiple layers stacked as
shown in the inset of Figure 2a. The transparent conductive oxide is ITO/Polyethylenimide
(PEIE), which is utilized to reduce the overall work function. The thickness of ITO/PEIE is
110 nm and is followed by the active layer. The active layer is PBDTTT-c (as donor material)
and C60-PCBM (as acceptor material) with a 1:1.5 ratio in weight, and its thickness is
500 ± 20 nm. PEDOT:PSS, as HTL, is deposited on top of the active layer. The last deposited
layer is aluminum, whose thickness is 100 nm. The work functions of ITO/PEIE and
PEDOT:PSS are 4.2 and 4.9 eV, respectively, as determined by Kelvin probe [29]. The optical
parameters of the distinct layers, namely, the refractive index and extinction coefficient, are
taken from [39]. Regarding the active material physical parameters, they are extracted from
the literature [29,38]. The LUMO and HOMO levels are 3.7 and 5.15 eV, respectively, giving
a blend bandgap of 1.45 eV. Further, the electron and hole mobility is taken as 6 × 10−4 and
1 × 10−3 cm2/V.s, respectively [38]. Regarding the bulk trap defects, a donor trap density
is estimated to be 2.7 × 1016 cm−3 at a position of 290 meV above the blend HOMO, while
a trap density of 2 × 1014 cm−3 of a mid-gap trap state is fitted [39].

Figure 2a shows the current density vs. voltage of this wideband detector that was
measured under 530 nm LED light having an intensity of 0.3 W/m2. The figure also shows
the TCAD simulation results, which are fitted by adjusting the conduction and valence
density of states and trap densities. More details about the calibration are found in [29,39].
Furthermore, Figure 2b exhibits the EQE characteristics under different bias conditions
for the experimental and simulation results. The good agreement between the simulation
results and those from measurements indicates a satisfactory validation of the material
parameters and physical models applied in the simulator.

3. Results and Discussions

In this section, the TCAD simulation results of our proposed perovskite/organic
material system PD are presented. The influence of trap density and thickness of the
perovskite film is studied to get a design guideline about the main parameters of the
perovskite layer that assure a narrowband detector operation. Next, the effect of the
variation of the perovskite energy gap is explored. Finally, the impact of reverse bias



Crystals 2022, 12, 1033 6 of 12

on the PD main parameters is investigated. The key factors of the PD under study are
extracted from the simulator once the simulation process is done. Besides the dark and
illuminated output current, other parameters like responsivity (R) and full width at half
maximum (FWHM) are considered significant metrics that can measure the effectiveness
of the detector and also can be used to differentiate between different types of PDs. The
responsivity of a PD is the ratio of the output photocurrent to the incident light power. It
can be related to EQE as [23]:

R = EQE
qλ

hc
(1)

The FWHM is an important figure of merit for the narrowband PD as it defines the
specificity of the detection wavelength as well as the imaging resolution.

3.1. Impact of Trap Density and Thickness of Perovskite Layer

First, we test the impact of trap density (Nt) and thickness (d) of the perovskite film
as the carrier lifetime, and thickness of the perovskite layer have to be designed carefully.
This step is essential to check and ensure the design criterion of suppression of short
wavelength range. In these simulations, the energy gap of the perovskite is set at 1.62 eV.
All other parameters are fixed as in Tables 1 and 2 unless otherwise stated. In this regard,
the simulated external quantum efficiency (EQE) curves under 0 V bias are shown for
different Nt and d values in Figure 3a and 3b, respectively. Upon decreasing Nt, the carrier
lifetime (τ) increases. On the other hand, as long as d is constant, the transition time (ttr) is
constant, which is given by,

ttr =
d2

µV
(2)

where µ is the carrier mobility and V is the average electric potential along the perovskite
layer. The calculated value of ttr is about 25 ns at d = 2.5 µm as shown in Figure 3a. When
the transition time is much longer than the carrier lifetime, the photogenerated carriers
recombine before collection occurs. This can be seen for higher values of Nt. However,
when Nt is declined (down to 1 × 1013 cm−3), the transition time becomes lower than the
carrier lifetime implying lower recombination probability, which results in higher EQE [23].
That is why it is crucial to keep high defect density in the perovskite film for an appropriate
narrowband PD design. Moreover, the thickness of perovskite film is varied while keeping
a fixed Nt = 1 × 1015 cm−3 (and so a fixed τ = 1 ns). The results show that when decreasing
d, the transition time will drop as shown in Figure 3b. Once the transition time becomes
comparable to the carrier lifetime, the carrier recombination likelihood decreases before
the collection resulting in an increased EQE at the short wavelength. So, a thickness of
perovskite film larger than 2 µm could be suitable to achieve an adequate narrowband
PD operation.

To present more physical insight into the photo response of the PD in accordance with
wavelength variation, we draw the profiles of the normalized photon absorption rate in two
different cases as shown in Figure 4. The first case is for a perovskite thickness d = 2.5 µm,
while the other one is for a thinner perovskite layer for which d = 0.5 µm. For the two
cases, Nt = 1 × 1015 cm−3. As it can be inferred from Figure 4a, the distribution of photon
absorption reveals that the part of incident light with wavelengths range shorter than
about 700 nm can be completely absorbed primarily by the perovskite film. This results
in the dominance of generation and recombination inside the perovskite and translates
into low EQE below 700 nm, as indicated in Figure 3a. The fringes that originate from
the interference progressively become noticeable for wavelengths longer than 700 nm up
to about 850 nm. This means that the generation and recombination occur mainly inside
the organic film, implying less absorption in the perovskite layer at higher wavelengths,
which results in higher EQE. On the other hand, for thin perovskite film, the profile of the
normalized photon absorption, displayed in Figure 4b, reveals that there is a penetration
of photons in the organic layer for the wavelength range from 500 nm up to 700 nm. This
result is supported by the behavior of the EQE shown in Figure 3b.
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3.2. Impact of Energy Gap of Perovskite Material

As mentioned herein, CsyFA1−yPb(IxBr1−x)3 perovskite material is selected thanks
to its bandgap tunability. In the following analysis, the impact of the energy gap of
CsyFA1−yPb(IxBr1−x)3 on the photoresponsivity is examined. Figure 5a shows the EQE
curves for different values of Eg. As Eg increases, the EQE increases as well; however, the
FWHM increases, which means a broader band. For a quantitative difference between the
various bandgap cases, we draw the peak responsivity and FWHM as seen in Figure 5b. It
can be observed that the peak responsivity increases upon increasing Eg while there is an
optimum minimum value of 33 nm that occurs at Eg = 1.69 eV. So, a suitable design can be
chosen for which the energy gap of the perovskite layer is 1.69 eV. For this case, the peak
responsivity is 0.12 A/W at a full width at half maximum of 33 nm.
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3.3. Impact of Reverse Bias

In this subsection, the influence of reverse bias on the PD performance is presented.
In these simulations, the perovskite energy gap is taken to be 1.69 eV. Figure 6a displays
the EQE for three cases of reverse bias at 0, 2, and 5 V. As the reverse bias rises, the
EQE increases but the spectrum becomes wider. For a quantitative view on the biasing
conditions, the peak responsivity and FWHM are plotted as shown in Figure 6b. As the
reverse bias increases, the two PD parameters raise; however, the rate of rise is slowed. A
suitable design could be achieved for a powered PD at a reverse voltage of 5 V. In this case,
the peak responsivity and the FWHM are about 0.34 A/W and 41 nm, respectively.
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3.4. Impact of Organic Layer Thickness and Defects

Here, we provide a parametric study to examine the variation of the thickness and
trap density of the organic layer on the responsivity and FWHM. The thickness is varied
from 100 to 500 nm while the trap density is weighted by a factor from 5% to 100%. As
seen in Figure 7, when the trap density declines, the responsivity increases (see Figure 7a);
however, the FWHM trend is different (see Figure 7b). The FWHM is maximum for lower
values of thickness given a fixed trap density. It is obvious that if the design thickness is at
500 nm, an optimum choice could be met for lower trap density. For a selected case of 10%
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reduction of the trap densities listed in Table 2, the responsivity is 0.3 A/W and the FWHM
is 37 nm. Although the FWHM has increased by about 12% of the corresponding value
at zero bias, an enhancement of 170% in R is achieved. This result shows the importance
of decreasing the bulk defects in organic layers. With the continuous advancement in
processing techniques, organic semiconductors can be enabled to have lower trap density
and improved crystallinity.
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Finally, a comparison between the key detector parameters of our structure and those
of some organic and inorganic narrowband PDs is provided in Table 3. The PDs are divided
into groups where the first group regards organic-base PDs showing structures of narrow
band [40,41] and some others with a higher detection band [42,43]. Although the bias
increases R and EQE, it results in widening the band [43]. The second category considers
the hybrid perovskite/organic based PDs showing lower responsivity in comparison to
organic candidates [21,22]. This is due to the thick perovskite layer, which generally reduces
the photogeneration inside the organic film. In our hybrid system, the simulation results
are encouraging as the value of R is comparable to organic PD while the FWHM is very
narrow. The influence of bias is to increase R and FWHM besides it causes a redshift in the
detection peak wavelength (λpeak). Moreover, reducing organic bulk defects results in a
substantial rise in R, while the FWHM does not significantly degrade as evident from the
results listed in Table 3.

Table 3. State-of-the-art comparison showing the main metrics of some reported narrow-band NIR
organic-based PDs.

Category Active Materials λPeak (nm) FWHM (nm) EQE (%) R (A/W) Bias (V) REF

Organic based

PBTTT:PC61BM 775 15 40.0 0.250 0 [40]
PCDTPTSe:PC71BM 710 60 18.0 0.100 0 [41]

PolyTPD:SBDTIC 740 141 10.5 0.060 0 [42]
PCbisDPP:PC61BM 730 210 80.0 0.310 −3.0 [43]

Hybrid
Perovskite/Organic

CH3NH3PbI3
/PCPDTBT:PC71BM 830 98 4.20 0.027 0 [22]

CH3NH3PbI3-xBrx/PTB7 690 50 20.0 0.110 −0.1 [21]

Our hybrid
Perovskite/Organic

CsyFA1−yPb(IxBr1−x)3/Blend 730 33 19.2 0.113 0
CsyFA1−yPb(IxBr1−x)3/Blend 707 41 58.0 0.340 −5
CsyFA1−yPb(IxBr1−x)3/Blend

(Low organic defects) 730 37 35.5 0.303 0
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Regarding inorganic PD candidates, a recent research study revealed a responsiv-
ity is 0.09 A/W with a FWHM of 35.3 nm at a peak wavelength of 735 nm for the
CdSe/Sb2(S1−x,Sex)3 inorganic system [24]. Thus, compared to our results, the proposed
perovskite/organic PD is promising and, upon appropriate design and simulation-driven
experimental studies, could compete the inorganic system PDs.

4. Conclusions

In this paper, we report on the results of our simulation studies on the perovskite/organic
heterojunction photodetector. A model structure of perovskite/organic heterojunction PD
was built in Silvaco TCAD environment. The effects of perovskite layer thickness, trap
density, and energy gap on the performance of the proposed PD are discussed. The simula-
tions are conducted regarding the external quantum efficiency (EQE) curves. Besides, the
main performance parameters like responsivity and full width at half maximum are also
presented. The simulation results show that the proposed PD reveals optimum performance
when the thickness of perovskite and organic layers are 2.5 µm and 500 nm, respectively.
The FWHM has a minimum value of 33 nm at an energy gap of 1.69 eV of the perovskite
material. The effect of reverse bias is also demonstrated, showing that a proper design could
be accomplished for a powered PD at a reverse voltage of 5 V. Under this condition, the peak
responsivity and the FWHM are about 0.34 A/W and 41 nm, respectively. Reducing the bulk
trap density inside the organic has a positive effect, as R is substantially increased while the
FWHM degrades by only 12%. This TCAD simulation study shows promising results and
reveals that the design of perovskite/organic PD could be feasible. Additionally, the design
concepts, presented in this paper, could be easily extended to other perovskite and organic
partner materials.
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