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Abstract  Response surface methodology (RSM) is a 
group of mathematical and statistical techniques helpful for 
improving, developing and optimizing processes. It also 
has important uses in the design, development and 
formulation of new products. Moreover, it has a great help 
in the enhancement of existing products. (RSM) is a 
method used to discover response functions, which meet 
and fulfill all quality diagnostics simultaneously. Most 
applications have more than one response; the main 
problem is multi-response optimization (MRO). The 
classical methods used to solve the Multi-Response 
Optimization problem do not guarantee optimal designs 
and solutions. Besides, they take a long time and depend on 
the researcher's judgment. Therefore, some researchers 
used a Goal Programming-based method; however, they 
still do not guarantee an optimal solution. This study aims 
to form a goal programming model derived from a chance 
constrained approach using quantile regression to deal with 
outliers not normal and errors. It describes the relationship 
between responses and control variables at distinctive 
points in the response conditional distribution; it also 
considers the uncertainty problem and presents an 
illustrative example and simulation study for the suggested 
model. 

Keywords  Goal Programming (GP), Quantile 
Regression, Multi Response Optimization (MRO), Chance 
Constrained 

1. Introduction
One of the main objectives to attain a quality 

distinctively is specifying the appropriate operating 
condition. However, the majority of industrial applications 
have more than one response, and the investigator seeks 
operating functions that serve all quality characteristics 
simultaneously. 

In real applications, multiple responses are observed. So, 
there is a need to reach some type of compromise about 
optimum conditions that are examined. The methodology 
becomes more difficult as the number of responses and 
factors become larger. 

Response surface methodology (RSM) is a mixture of 
mathematical and statistical ways that can be used for 
optimizing, improving and developing methods. 

RSM is applied in the new formulation of products and 
advancement of design too. Moreover, it has a contribution 
to the existing product designs improvement as defined by 
Myers and Montgomery [1]. 

The following section shows that all the classical 
methods of (MRO) do not guarantee an optimal design or 
optimum solution. Furthermore, it takes a long time and 
depends on a researcher's judgment. Therefore, some 
researchers used a Goal Programming method to solve this 
problem, yet it does not guarantee an optimal solution 
because it doesn’t consider the randomness in MRO. 

This paper tries to present (MRO) methods and main 
concepts. In addition, it aims at constructing a 
mathematical programming model based on a chance 
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constrained approach: to deal with randomness in the 
multi-response optimization problem (MRO) and to get the 
best design and optimum solution considering the response 
variable and decision variables directly. 

This paper includes five more sections besides the 
introduction section. The second section presents the 
literature review; section three shows the suggested model; 
section four clarifies an illustrative example for the use and 
results of the suggested model; section five presents a 
simulation study to check the performance of the suggested 
model and the last section presents the discussion and 
conclusion for the suggested model. 

2. Literature Review
This section clarifies the MRO concept and problem as it 

introduces the main classical methods presented for it. 
Moreover, it presents two of the latest and important 
previous studies that used Goal programming to solve 
MRO. 

2.1. The Multi Response Optimization Problem (MRO) 

Montgomery [2] defined RSM as a mixed method that is 
used for the modeling and analysis of cases where a studied 
response is affected by several variables while the aim is 
response optimization.  

A response variable: y 
Independent variables: x1, ……, xk  
Model: y=g (x1 ,..., xk) +ɛ 
RS model: y=f (x1,..., xk) +ɛ f is usually 1-st or 2-nd order 

polynomial. 
The goal here is to guide the experimenter efficiently 

along a trail of improvement toward the general matter of 
the optimum. Based on this model Montgomery [2] 
represented a graphical solution. 

2.2. Classical Methods 

Ding, Lin and Wej [3] proposed the first method to solve 
the multi-response problem. They presented the dual 
response optimization (DRO) method, yet they mentioned 
that (DRO) are robust design techniques and they might 
not be appropriate if there is more than one response of 
interest. Najafi, Salmasnia, and Kazemezaheh [4] also 
presented the DRO method; they modeled variance and 
mean of the single response, respectively. Such methods 
try to adjust control variables where the targeted response 
is as near as possible to its target value under low 
sensitivity to uncontrollable variables. 

Najafi, Salmasnia, and Kazemezaheh [4] classified 
MRO methods into three main categories as follows:  
(1) The first category: is working great when there is a 

small number of control variables. This method 
includes covering each response contour plot and 
discovering the interesting region that satisfies all the 

responses. However, for more than three responses, 
covering contour plots becomes inappropriate, which 
represents the disadvantage of this category. 

(2) The second category: is choosing one response 
variable as the main objective function; and 
optimizing it is achieved by adding other response 
variables in the rules of the constraint. The main 
disadvantage of these methods is that they do not 
consider the importance of all the response variables. 
Besides, it is not easy to select the primary response 
variable as an objective function. 

(3) The third category: is aggregating the multi 
responses in one single function, and one objective 
function problem is satisfied. 

2.3. Goal Programming for the Multi-Response 
Optimization Problem 

Kazemzaded et al., [5] proposed a form of the loss 
function and the desirability method. The quadratic 
constraints forms and objective functions are coming after: 

Min𝑁𝐷𝑂𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑔1 + 𝑔2 + 𝑔3 + 𝑔4  (1) 

Subject to 

∑ 𝛾𝑗𝑚
𝑗=1 (1 − 𝑑𝑗)2 − 𝑠1𝑔1 = 𝑇1   (2) 

∑ 𝑎𝑗𝑚
𝑗=1 �

𝜎𝑗
2(𝑥)

𝑦
� − 𝑠2𝑔2 = 𝑇2   (3) 

∑ 𝑏𝑗𝑚
𝑗=1 �

𝜎�𝑗
2(𝑥)

𝑦
� − 𝑠3𝑔3 = 𝑇3  (4) 

 𝑐𝑝𝑟(1 − 𝑑𝑝𝑟)2 − 𝑠4𝑔4 = 𝑇4  (5) 

𝑥 ∈ 𝛺  𝑎𝑛𝑑 𝑦 = max (𝜎�𝑗2(𝑥))  (6) 

Where j=1,2,…, m which is the number of responses and 
γj is the jth response weight that the customer can decide. 

The estimated 𝑦 � (x) can be transformed by the 
desirability function approach to a free value scale called 
the desirability dj which is the value for such responses sk 
and Tk. where sk,Tk; (k=1,2,3,4) are weights and targets 
defined by users, respectively. 𝜎𝑗2(𝑥)  is the variance of 
observed values of the jth response at the setting of 
x=(x1,x2,….,xn)' as a decision variable; 𝜎�𝑗2(𝑥) is the 
variance for this response at x; Ω is the spherical or 
rectangular experimental region and NDOVERALL is the 
non-desirability of all factors: g1is for bias; g2 is for 
variation; g3 is for error and g4 is for specification region. 

As dpr is another desirability function for the probability 
of meeting, the response specifications and cpr are the 
weight of related desirability. 

Moreover, the first and last constraints (2), (5) can be 
merged in one constraint as follows: 

∑ 𝛾𝑗𝑚+1
𝑗=1 (1 − 𝑑𝑗)2 − 𝑠1𝑔1 = 𝑇1  (6) 

Where  𝛾𝑚+1 = 𝑐𝑝𝑟   (7) 

𝑥 ∈ 𝛺 
This form is a combination of desirability function and 
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loss function. There are four terms (𝑔1,𝑔2,𝑔3,𝑎𝑛𝑑 𝑔4) in 
this equation which is non-desirability of bias, variation, 
errors of predictions and separation from responses' 
specification region. The loss function (eq.1) is adding the 
variance-covariance structure of the responses; the 
desirability function (eq.2) is that the desirability value 
uses scale-free and same magnitude of each response. 

This model’s problem is the sensitivity of setting 
variables (x) and Tk conditions as they must be determined 
by the decision-maker, which affects the optimal solution.  

2.4. Optimization of Probabilistic Multi Responses 
Surface 

Hejazi et al. [6] presented the following model to 
ensure robustness in the results of modeling and 
optimization of multi-response surfaces with probabilistic 
coefficients and responses weights. 

MRO problem is defined as follows: 

Min 𝑅�(𝑋) = 𝑀𝑖𝑛

⎝

⎜⎜
⎜
⎛
𝑅�1(𝑋)
𝑅�2(𝑋)

.

.

.
𝑅�𝑝(𝑋)⎠

⎟⎟
⎟
⎞

Min 𝑅�(𝑋) = 𝑀𝑖𝑛 �𝑅�1(𝑋) 𝑅�2(𝑋) … . .𝑅�𝑃(𝑋)�   (8) 

Subject to 

𝐿 < 𝑋 < 𝑈   (9) 

 𝑊ℎ𝑒𝑟𝑒   𝑙𝑖 < 𝑥𝑖 < 𝑢𝑖 ,  i=1,2,….,n 

Which is a nonlinear multi-objective optimization 
problem. 

Stochastic optimization problem: 

MinX𝐹(𝑋) = MinX ∑ 𝑤𝑘
𝑝
𝑘=1 �𝑑𝑘 + �́�𝑘�      (10) 

Subject to 

𝑅�𝑘(𝑋) + 𝑑𝑘 − �́�𝑘 = 𝑡𝑘,  (11) 

𝐿 < 𝑋 < 𝑈      (12) 

Where 

𝑑𝑘 = 1
2
��𝑅�𝑘(𝑋) − 𝑡𝑘� + �𝑅�𝑘(𝑋) − 𝑡𝑘��     (13) 

�́�𝑘 = 1
2
��R�k(X) − tk� − �R�k(X) − tk��   (14) 

𝑊 ∈ 𝛺𝑤 

Where W is the response weight that belongs to response 
variables regions  𝛺𝑤 . Moreover, wk. is the kth response 
weight; tk is the target value and Rk(x) is the predictor 
response. 

Consider a multi-response model with functions 𝑅�𝑘(𝑥) 
of the form second-order polynomial function, k=1,2,…,p. 

𝑅�𝑘(𝑥) = 
�̂�0𝑘 + ∑ �̂�𝑖𝑘𝑛

𝑖=1 𝑥𝑖 + ∑ �̂�𝑖𝑖𝑘𝑛
𝑖=1 𝑥𝑖2 + ∑ ∑ �̂�𝑖𝑗𝑘𝑛

𝑗>𝑖 𝑥𝑖𝑥𝑗𝑛
𝑖=1 =

�́�(𝑥)�̂�𝑘 ∀𝑘 = 1,2, … . . ,𝑝.   (15) 

Where 𝑉𝑎𝑟�𝑅�𝑘(𝑋) + 𝑑𝑘 − �́�𝑘� = 0 assuming that w 
is a vector of independent random response weights. This 
model has considered multiple correlated response 
surfaces with stochastic nature where the weight and 
regression coefficients have been considered in 
probabilistic terms. 

3. The Proposed Model
One of the main and basic mathematical programming 

methods to solve optimization problems is the Goal 
Programming approach (GP) which can deal with 
restricted problems with different constraints. GP works to 
simplify the constraints and treats it as a goal to be 
achieved by adding terms like positive and/or negative 
deviational variables to the objective function as cited in 
Rabee et al. [7]. 

The chance-constrained approach is one approach of the 
stochastic programming approaches that can be solved by 
using probabilistic programming, where the constraint(s) 
must be satisfied with a certain probability as defined by 
Armstrong and Balintfy [8]. The disjoint constrained 
treatment is considered in this study. 

In the following part, the chance-constrained approach 
will be introduced. 

Yu, Lu & Stander [9] mentioned that regression is used 
to check the relationship between some covariates and a 
response variable; it was considered one of the important 
methods for applying research for many years. Least 
squares regression for a response Y and a predictor X 
model the conditional mean, but it does not capture the 
conditional variance. 

Rodriguez and Yao [10] mentioned that quantile 
regression can be used when the data collection could be of 
a big size; this leads to a large scale of datasets that cannot 
be fit into memory or multiple input variables. Besides, it is 
more robust to outliers and semi-parametric as it avoids 
assumptions about the error process parametric distribution. 
It is a powerful tool to detect the heterogeneous impact of 
covariates at various quantiles of the outcome and 
supplements excellently the mean regression when data 
includes outliers and long tails. 

3.1. The Proposed Chance Constrained Model to 
(MRO) 

This model is a modification of the stochastic 
optimization model in section (1.3). The objective 
function in the chance-constrained model remains the same, 
and the constraints became in a form of chance-constrained 
where tk in equation (11) is  random variables with known 
probability distribution function Fk (.). 
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Min𝑥 Z(𝑥) =  Min𝑥 ∑ 𝑤𝑖(𝑛𝑖 + 𝑝𝑖) 𝑘
𝑖=1   (16) 

Subject to 

[ 𝑅�𝑖(𝑥) + 𝑛𝑖 − 𝑝𝑖]𝑖  ≤ 𝐹−1(1 −∝𝑖)     (17) 

Where i=1,2,…,p, and l˂ 𝑥 ˂u 

𝑛𝑖 = 1
2

(�𝑅�𝑖(𝑥) − 𝐹−1(1 −∝𝑖)�+ 

+(𝑅�𝑖(𝑥) − 𝐹−1(1 −∝𝑖)))  (18) 

𝑝𝑖 =
1
2

(�𝑅�𝑖(𝑥) − 𝐹−1(1 −∝𝑖)� − 

−(𝑅�𝑖(𝑥) − 𝐹−1(1 −∝𝑖)))  (19) 

Where the objective function Z(x) aims to minimize the 
summation of all deviations where nis are positive 
deviations, and pis are negative deviations. 

Moreover, wi is the ith response weight; 𝑅�𝑖(𝑥) is the 
predictor response, and 𝐹−1(1 −∝𝑖)  is the inverse 
function of the target value tk. 

3.2. Modified Quantile Regression Model 

Quantile Regression can be used to estimate 𝑅�𝑖(𝑥) to 
measure the variable effect of all individuals (not the 
average effect). It also helps in measuring heterogeneous 
effects of the variables which make quantile regression a 
more consistent approach than linear regression. 

The Relation between the regressors and their outcome 
can be represented by the conditional function 𝑄𝑞(𝑌 𝑋⁄ ) 
where q is the quantile of an empirical distribution, 
𝑞 ∈ (0,1). 

𝐹�𝑌𝑞� = 𝑞 𝑎𝑛𝑑 𝑌𝑞 = 𝐹−1(𝑞). 

Min z = ∑ [𝑟𝑗 ∑  𝑛𝑖𝑗𝑚
𝑖=1 + (1 − 𝑟𝑗)∑  𝑝𝑖𝑗]𝑚

𝑖=1
𝑞
𝑗=1  (20) 

Subject to: 
∑ 𝑏0 + 𝑥1𝑖𝑏1𝑗 + 𝑥2𝑖𝑏2𝑗 + 𝑥3𝑖𝑏3𝑗 + ⋯𝑥𝑘𝑖𝑏𝑘𝑗 + 𝑛𝑖𝑗 −𝑚
𝑖=1

𝑝𝑖𝑗 = 𝑦𝑖   (21) 

 𝑏10 ≤  𝑏20 … .≤ 𝑏𝑞0 ,   (22) 

𝑏11 ≤  𝑏21  … .≤ 𝑏𝑞1  ,  (23) 

𝑏1𝑘 ≤  𝑏2𝑘 … . .≤  𝑏𝑞𝑘 ,   (24) 
Where i=1,2,3,……m. and j=1,…,q. 
Where m is the sample size; k is the number of 

independent variables; 𝑟𝑗  is the jth quantile and q is the 
number of quantiles as n's are positive deviations and pis 
are negative deviations. Constraint (21) aims to estimate bs 

(b1k, b2k,…., bqk) over the required quantile and find the 
corresponding deviations. Moreover, the bs (b1k, b2k,…., bqk) 
increase as the quantile increases as shown in constraints 
22-24.  

4. Illustrative Example
This section presents a simple numerical example to test 

the validity of the proposed model, evaluate its 
performance and results. Data used were about a real estate 
expert who needs to discover the relationship between 
various characteristics of houses and their sale prices. She 
collected data based on the following variables (as cited in 
Mann [11]). 

Price (Y): the sale price of a house in thousands of 
dollars  

Lot size (X1): the size of the lot in acres 
Living area (X2): Living area in square feet 
Age (X3): Age of a house in years 
GAMS software was used to solve the modified model; 

to estimate the quantile regression using 25th, 50th, and 75th 
quantile and to minimize the distances nij, pij . The results 
showed zero non-optimal solution, zero infeasible solution 
and zero unbounded solutions. Also, table (1) shows results 
of the estimated B’s, optimal solution and distances using 
the three quantiles. 

y0.25 = −17.382 + 11.404x1 + 0.080x2 − 0.699x3 

y0.5 = −17.382 + 25.654x1 + 0.080x2 − 0.699x3 

y0.75 = −17.382 + 28.939x1 + 0.080x2 − 0.484x3 

Table (1) shows that the B0 value doesn’t change in the 
three cases (Figure 1) and B2 which measures the effect of 
living area changes doesn't change in the three cases 
(Figure 3). Moreover, B1 which measures the change in lot 
size increases with the increase of quantile (Figure 2), 
where the effect of age change on price (which is measured 
by B3) remains fixed in the first two cases (25th and 50th 
quantiles) and then increases in the third case (75th quantile) 
(Figure 4).  

Table (2) shows that the mean and standard deviation of 
the estimated y increase in the case of higher quantile 
(Figure 5, 6). 

This proposed model helps in monitoring the changes 
in 𝑦 � over the three quantiles. This can be explored 
graphically by presenting the 𝑦� surface and 𝑦� chart of the 
three quantiles. These figures show that 𝑦� is higher in the 
higher quantile (Figure 7, 8). 

All figures and tables in this research are generated by 
the author. 
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Table 1.  Proposed Model Results 

25th quantile 50th quantile 75th quantile 

B0 -17.382 -17.382 -17.382 

B1 11.404 25.654 28.939 

B2 0.080 0.080 0.080 

B3 -0.699 -0.699 -0.484 

n1 63.121 43.170 36.848 

n2 14.508 1.682 0.000 

n3 32.641 0.000 0.000 

n4 9.975 0.000 0.000 

n5 45.146 8.094 0.000 

n6 0.000 0.000 0.000 

n7 29.926 0.000 0.000 

n8 7.321 0.000 0.000 

n9 54.806 14.904 2.907 

n10 0.000 0.000 0.000 

n11 0.000 0.000 0.000 

n12 31.611 7.385 0.000 

n13 277.612 0.000 0.000 

p1 0.000 0.000 0.000 

P2 0.000 0.000 3.859 

P3 0.000 0.000 0.000 

P4 0.000 0.000 7.470 

P5 0.000 0.000 2.600 

P6 10.653 27.754 35.573 

P7 0.000 0.000 8.837 

P8 0.000 8.355 0.000 

P9 0.000 0.000 0.000 

P10 0.000 22.801 28.918 

p11 58.662 31.264 43.714 

p12 0.000 0.000 3.791 

p13 0.000 0.000 4.012 

Z 361.118 

Source: table generated by researcher 

Table 2.  Calculated mean and Standard Deviation of all Estimated Y 

25th quantile 50th quantile 75th quantile 

Mean 187.7861 211.463 219.5508 

Standard Deviation 43.29646 53.43539 55.04773 

Source: table generated by researcher 
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Source: Figure generated by researcher 

Figure 1.  B0 chart for the three quantiles 

Source: Figure generated by researcher 

Figure 2.  B1 chart for the three quantiles 

Source: Figure generated by researcher 

Figure 3.  B2 chart for the three quantiles 

Source: Figure generated by researcher 

Figure 4.  B3 chart for the three quantiles 

(Source: Figure generated by researcher, i.e. x-axis numbers refer to (1) 
25%, (2) 50% and (3) 75%) 

Figure 5.  𝒚� mean for the three quantiles 

(Source: Figure generated by researcher, i.e. x-axis numbers refer to (1) 
25%, (2) 50% and (3) 75%) 

Figure 6.  𝒚� standard deviation for the three quantiles 

Figure 7.  Surface of 𝒚� for the three quantiles 

Figure 8.  Chart of 𝒚� for the three quantiles 
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5. Simulation Study
This section presents a simulation study that aims to 

examine and evaluate the performance of the proposed 
Goal Programming model by: using generated data from a 
standard normal distribution; finding an optimal solution 
by estimating the parameters over different quantiles and 
minimizing the error using R software. 

Control variables (X’s), Dependent Variables (Y) are 
generated from standard normal distribution as Bilias, 
Chen and Ying [12] mention. Moreover, 2 and 3 control 
variables (independent variables) are generated. 

Quantiles Tested (q): represented in 25%, 50% and 75% 
are three levels which are used to evaluate the proposed 
model performance as in Yu, Lu and Stander [9]. 

The error (𝜺𝜺) is generated from standard normal 
distribution as mentioned in Bilias, Chen and Ying [12]. 
Sample size (n): 100 are used. 

The number of iteration: 10 and 1000 iteration are used 
to monitor the change in the results. 

Assumed parameters (B's): b0=5, b1=8, b2=6 in case of 
two variables and b0=5, b1=8, b2=6 and b3=4 in case of 
three variables. 

Table 3 shows the different cases considered in the 
simulation study; moreover, the remaining tables and 
graphs, presented in this section, are generated by the 
author and present the results of A's dataset where the 
sample size is 100, and different numbers of variables and 
iterations were utilized. 

Table 3.  The Generated Data Details 

Dataset ( #) Sample size 
(n) 

Number of 
variables (# of 

V) 

Number of 
Iterations (iter) 

A1 100 2 10 

A2 100 2 1000 

A3 100 3 10 

A4 100 3 1000 

Source: generated by the researcher. 

Table 4 presents the simulation of sample size 100 with 
2 variables with different iterations and shows the results of 
proceeding with the proposed goal programming model 
concerning the three quantiles 25%, 50%, and 75%. It also 
presents the coefficients estimated by quantile regression 
to compare between the both estimated results. 

Results show that the proposed goal programming 
model estimated parameters are closed to the parameters 
estimated from the quantile regression as there is a 
significant difference between the defined parameters (5, 8, 
and 6) and the estimated parameters of both methods. 

The error resulting from the proposed model is less than 
the quantile regression error in all cases where it is close in 
the 50% condition (median). 

The increase of iterations number helps in decreasing the 
error, but the bigger difference is in the quantile regression 
rather than the proposed model. 

Table 4.  Results of A1 and A2 

# N # of 
V iter. q 

Quantile 
regression's 
coefficient 

B's 
changes 

Regression 
error 

Suggested Goal 
programming 

models’ 
coefficient 

B's 
changes 

Error 
from 

modeling 

A1 100 2 10 

25% 

b0 4.27119 0.7281 

39.52575 

b0 4.270992 0.72901 

30.55212 b1 7.81686 0.18314 b1 7.817056 0.18294 

b2 6.02052 -0.0205 b2 6.020946 -0.0209 

50% 

b0 4.96143 0.0386 

40.68336 

b0 4.961407 0.03859 

40.53123 b1 7.96041 0.03959 b1 7.960195 0.03981 

b2 6.12064 -0.1206 b2 6.120706 -0.1207 

75% 

b0 5.80792 -0.8079 

41.44221 

b0 5.808135 -0.8081 

31.25707 b1 8.07925 -0.0793 b1 8.0795 -0.0795 

b2 6.03064 -0.0306 b2 6.030714 -0.0307 

A2 100 2 1000 

25% 

b0 4.44164 0.55836 

35.83132 

b0 4.364194 0.63581 

29.80834 b1 8.48716 -0.4872 b1 8.414109 -0.4141 

b2 5.52431 0.47569 b2 5.553585 0.44642 

50% 

b0 4.85082 0.14918 

37.73903 

b0 4.850968 0.14903 

37.40243 b1 7.88521 0.11479 b1 7.886762 0.11324 

b2 6.17186 -0.1719 b2 6.171747 -0.1717 

75% 

b0 5.61006 -0.6101 

35.23566 

b0 5.60424 -0.6042 

28.52981 b1 7.98591 0.01409 b1 8.000362 -0.0004 

b2 6.03917 -0.0392 b2 6.031842 -0.0318 

(Source: table generated by researcher, i.e.: b0=5, b1=8 and b2=6 are the assumed coefficient) 
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Figure 9 shows the graphs of the estimated B's in the 
case of A1 and A2. The changes in the estimated parameters 
are not big while estimated using quantile regression or the 
proposed model. But, changing the number of iteration 
affects the estimated coefficient, and this difference 
between both cases (A1 and A2) is clear in the estimated 
parameters b1 and b2. 

Figure 10 clarifies the graphs of quantile regression and 
proposed goal programming model errors. It shows that the 
proposed Goal Programming model error is lower, and by 
increasing the iteration number, the error decreases in both 
methods. The increase in iteration decreases the error, and 
it is clearer in quantile regression errors. 

Figure 11 shows the mean and standard deviation of 
estimated Y over the three quantiles in both cases. The 
mean of estimated Y, calculated in the case of A1 from 
quantile regression (2.314773, 2.969411 and 3.791816), is 
close to the one calculated from a proposed model 

(2.314518, 2.969434 and 3.791972) for the three quantiles, 
respectively. This is because the standard deviations 
calculated on case A1 from both methods are close too 
(9.613105, 9.784028 and 9.833672) (9.613494, 9.783888, 
and 9.833917) from quantile regression and proposed 
model for three quantiles respectively. 

By increasing the number of iteration, the mean and 
standard deviation are closer in both methods: mean 
(3.173719, 3.623808 and 4.377346), (3.103562, 3.623768 
and 4.370156) standard deviation (11.42538, 11.53694 and 
11.49314), (11.39354, 11.53817 and 11.49751) from 
quantile regression and proposed model for three quantiles 
respectively, but they differ in cases A1 and A2 where they 
increase by increasing the iteration number. 

Moreover, (Figure 12) presented the graphs of estimated 
Y which seems closer in both methods (quantile regression 
and proposed model) but differ between cases A1 and A2.

Source: Figure generated by researcher 

Figure 9.  A1, A2 Estimated B's of three quantiles 
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Source: Figure generated by researcher 

Figure 10.  A1, A2 Error of three quantiles 

Source: Figure generated by researcher 

Figure 11.  A1, A2 Mean and Standard deviation of Estimated Y of three quantiles 
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Source: Figure generated by researcher 

Figure 12.  A1, A2 Estimated Y of three quantile 

Table 5.  Results of A3 and A4

# n # of 
V iter. q 

Quantile 
regression's 
coefficient 

B's 
changes 

Regression 
error 

Suggested Goal 
programming 

models’ 
coefficient 

B's 
changes 

Error 
from 

modeling 

A3 100 3 10 

25% 

b0 4.58433 0.41567 

35.35257 

b0 4.61162 0.38838 

29.60855 
b1 7.7377 0.2623 b1 7.72655 0.27345 

b2 5.89564 0.10436 b2 5.92999 0.0701 

b3 3.76528 0.23472 b3 3.738378 0.26162 

50% 

b0 4.80038 0.19962 

38.58572 

b0 4.799232 0.20077 

37.9574 
b1 7.83809 0.16191 b1 7.83481 0.16519 

b2 6.1851 -0.1851 b2 6.18716 -0.1872 

b3 4.01333 -0.0133 b3 4.013267 -0.0133 

75% 

b0 5.64736 -0.6474 

38.68304 

b0 5.658557 -0.6586 

29.92862 
b1 8.014 -0.104 b1 7.991467 0.00853 

b2 5.91088 0.08912 b2 5.894351 0.10565 

b3 3.85084 0.14916 b3 3.873156 0.12684 

A4 100 3 100
0 

25% 

b0 4.17281 0.82719 

39.35701 

b0 4.175987 0.82401 

31.49394 
b1 8.00718 -0.0072 b1 8.008875 -0.0089 

b2 6.23732 -0.2373 b2 6.236938 -0.2369 

b3 3.82079 0.17921 b3 3.82239 0.17761 

50% 

b0 5.0414 -0.0414 

39.9965 

b0 5.040987 -0.041 

39.33286 
b1 8.09653 -0.0965 b1 8.096746 -0.0967 

b2 6.16519 -0.1652 b2 6.164858 -0.1649 

b3 3.75302 0.24698 b3 3.753652 0.24635 

75% 

b0 5.73027 -0.7353 

41.28788 

b0 5.789616 -0.7896 

34.88417 
b1 8.14081 -0.1408 b1 8.070097 -0.0701 

b2 6.04631 -0.0463 b2 5.979325 0.02067 

b3 3.84261 0.15739 b3 3.887356 0.11264 

(Source: table generated by researcher, i.e.: b0=5, b1=8, b2=6 and b3=4 are the assumed coefficient) 



Mathematics and Statistics 10(1): 201-214, 2022 211 

Table 5 shows the data simulated from R as 3 variables 
and sample size 100 with different iterations. It shows the 
results of the three quantiles 25%, 50% and 75% while 
using quantile regression and running the proposed model. 

The proposed model estimated parameters are close to 
the parameters estimated from the quantile regression as 
shown in the above table. There is a difference between the 
defined coefficient (5, 8, 6, and 4) and the estimated 
coefficient using both methods. 

Furthermore, the proposed model error is lower than the 
quantile regression error in all quantiles except 50% 
(median); it is closer. The error decreases by increasing the 
iterations number, where this difference is clear in the 
results of quantile regression. 

Comparing the four cases (A1, A2, A3 and A4), the 
increase the iteration and number of variables increases the 
error where the increase is higher in the quantile regression 
method.  

Source: Figure generated by researcher 

Figure 13.  A3 and A4 Estimated B's of three quantiles 

Source: Figure generated by researcher 

Figure 14.  A3 and A4 Error of three quantiles 
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Figure 13 clarifies  the graphs of A3 and A4 estimated 
B's. The estimated coefficient has a big difference between 
both methods (quantile regression and proposed model). 
However, the number of iteration increase makes a change 
in the estimated coefficient between cases A3 and A4. 

Figure 14 presents the error graphs of the quantile 
regression and proposed model. It shows that the proposed 
model error is lower in both cases (A3 and A4). The 
increase of the iteration number decreases the error of both 
methods. 

Figure 15 shows the calculated mean and standard 
deviation of the estimated Y over the three quantile for 
both cases using the two methods. The mean of estimated 
Y, calculated in case A3 from quantile regression (5.24133, 
5.492843 and 6.355467), is close to the one calculated 
from proposed model (5.304926, 5.491517 and 6.479226) 
for the three quantile, respectively. 

The standard deviations calculated on case A3 from both 
methods are close too (10.26474, 10.86874 and 10.80572), 
(10.54616, 10.86726 and 11.99927) from quantile 
regression and proposed model for three quantiles 
respectively. 

While the number of iteration increases, the mean and 
standard deviation are closer in both methods; mean 
(2.955248, 3.816682 and 4.549522), (2.958738, 3.816473 
and 4.640588), standard deviation (12.51837, 12.52435 
and 12.54908), (12.52053, 12.5247 and 12.4743) from 
quantile regression and proposed model for three quantiles 
respectively, but the standard deviation increases in cases 
A4. 

Figure 16 presents the estimated Y graphs. The quantile 
regression graphs are similar to the proposed model graphs, 
but case A3 graphs are not similar to A4 graphs. 

Source: Figure generated by researcher 

Figure 15.  A3 and A4 Mean and Standard deviation of Estimated Y of three quantiles 

Figure 16.  A3 and A4 Estimated Y of three quantiles 
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The conducted simulation study proves the performance 
of the suggested goal programming model as it shows its 
quality with increasing the number of independent 
variables (multi-response). Moreover, it guarantees 
minimizing the error and having an optimal solution. 
Besides, the proposed goal programming model which will 
be useful for the skewed distributions. 

6. Discussion and Conclusions
This section presents the limitations and main 

conclusions of this study besides introducing some 
suggestions for further study. 

6.1. The Study Limitations 

This section presents some of the limitations that  the 
researchers faced through preparing this study: 
(1) Prior studies on the same topic: there was a lack of 

previous studies concerning the same topic. This 
study represents a merge between experimental 
design and operation research. All previous studies 
mentioned in the literature were focusing on helping a 
certain field or solving a certain problem in the 
production process. The useof quantile regression and 
chance constraints together is the new idea proposed 
in this research. 

(2) Data used: finding the data used in previous studies, 
to evaluate the proposed model, was so difficult. 
Some studies presented it as codes. 

(3) Time: this research takes time to be accomplished as 
consisting the model and formulating it in chance 
constraints form, then coding it on the Gams software 
took a long time to solve errors besides evaluating the 
model results which required extra time as well. 

6.2. The Main Conclusions 

This section introduces the main results and 
achievements of this study: 
(1) The Proposed model is available for quantitative 

decision making where its main goal is finding an 
optimal solution for the available data regardless the 
shortage of the available resources and information. 

(2) Using Goal Programming in the proposed model 
helps in dealing with a set of objectives besides using 
the available resources to deal with the goals and their 
priorities. This is because it is a tool to help the 
modeling improvement and analyses in real-life 
cases. 

(3) Suggesting the quantile regression to estimate the 
predictor response helps in understanding 
relationships between variables regardless the mean 
of the data. In addition, it may help in dealing with 
data non-normally distributed which may have 
nonlinear relationships with the predictor. 

(4) The use of the chance-constrained method in the 
proposed model helps in solving an optimization 
problem with the problem of uncertainty as it 
increases the probability of satisfying a certain 
constraint. 

(5) Simulation study helps to prove and evaluate the 
proposed Goal Programming model performance.  

(6) Finally, the proposed Goal Programming model 
guarantees to work with multiple objectives, many 
responses while having optimal solutions. 

The proposed model can deal with uncertainty problems 
that exist in real-life applications like production planning, 
calculating economic growth, logistic services and 
transportation problem. This is due to its efficiency in 
finance cases where there is uncertainty in prices like: 
demand, supply and currency exchange rate. Moreover, it 
is recommended for optimal renewable energy generation. 

6.3. Suggestions for Further Study 

The following suggestions can be considered for future 
studies: 
(1) Applying the experiment on a wider sample size. 
(2) Conducting additional simulation study to compare 

different sample sizes while using different numbers 
of variables. 

(3) Generating data from different distributions. 
(4) Evaluating the model using more quantiles. 
(5) Using another statistical package that depends on 

programming language like R software. 
(6) Organizing a comparative study between the 

proposed model and old methods. 
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