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RESEARCH PAPER

Dasatinib ameliorates thioacetamide-induced liver fibrosis: modulation of miR-378
and miR-17 and their linked Wnt/b-catenin and TGF-b/smads pathways

Mai A. Zaafana and Amr M. Abdelhamidb

aFaculty of Pharmacy, Pharmacology and Toxicology Department, October University for Modern Sciences and Arts (MSA), Dokki, Egypt;
bFaculty of Pharmacy, Biochemistry Department, October University for Modern Sciences and Arts (MSA), Dokki, Egypt

ABSTRACT
Hepatic stellate cells activation (HSCs) plays a crucial role in the pathogenesis of liver fibrosis. Specific
microRNAs have been suggested to affect the activation of HSCs via various signalling pathways including
TGF-b/smads and Wnt/b-catenin pathways. Dasatinib is a multitarget inhibitor of many tyrosine kinases
has recently studied for its anti-fibrotic effects in a variety of fibrous diseases. This study investigated the
role of modulation of miRNA-378 and miRNA-17 in the pathogenesis of liver fibrosis through altering
Wnt/b-catenin and TGF-b/smads pathways and evaluated the beneficial effect of the tyrosine kinase inhibi-
tor, dasatinib, in thioacetamide-induced liver fibrosis model in mice. Treatment with dasatinib down-regu-
lated miRNA-17 expression, leading to the restoration of WiF-1 and smad-7 which cause the inhibition of
both Wnt/b-catenin and TGF-b/smads signalling. In addition, it upregulated miRNA-378 leading to the
decrease of Wnt-10 which contributes to the suppression of activated HSCs.

GRAPHICAL ABSTRACT

ARTICLE HISTORY
Received 11 June 2021
Revised 6 October 2021
Accepted 12 October 2021

KEYWORDS
Dasatinib; liver fibrosis;
smad-3; Wnt-10; mice

1. Introduction

Chronic liver diseases (CLDs) are a major public health issue that
affects people all over the world. CLDs affect 844 million people
worldwide, resulting in two million deaths each year, according to
estimates1. Liver fibrosis is characterised by an excessive depos-
ition of extracellular matrix (ECM) proteins in liver, mainly synthes-
ised by activated hepatic stellate cells (HSCs)2. Hundreds of
thousands of people worldwide suffer from liver fibrosis, which is
caused in part by the obesity epidemic, as well as the high preva-
lence of alcohol addiction and viral hepatitis3. Hepatitis C virus
(HCV) is the leading cause of chronic hepatitis, liver cirrhosis and
hepatocellular carcinoma (HCC). Around 55–85% of HCV-infected

patients become chronic active cases and go through the stages
of fibrosis, cirrhosis, and possibly HCC4.

TGF-b/smad, p38 MAPK, and other pathways have all been
linked to the development of liver fibrosis. However, the molecu-
lar mechanism is unknown, and there is no effective treatment
available5. Exploration of new signal pathways and the develop-
ment of novel therapeutic strategies are thus urgently required.
Previous studies have shown that an abnormal Wnt/b-catenin sig-
nalling pathway plays a key role in the development of organ
fibrosis, accelerates HSC activation including cell proliferation and
ECM accumulation, and may be a novel therapeutic target in
fibrotic disorders6. Single Wnt ligands can activate multiple signal-
ling pathways, increased gene expression of Wnt-1, Wnt-10, and
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b-catenin were observed in lung fibrosis7. Overexpression of Wnt-
10 results in progressive loss of subcutaneous adipose tissue
accompanied by dermal fibrosis and increased expression of
fibrotic genes8. Several secreted protein families antagonise Wnt/
b-catenin signalling. The function of Wnt inhibitors depends on
their expression levels and the cellular context. The secreted
Frizzled-related proteins (sFRPs) and Wnt inhibitory factor (WIF),
which exhibit a high degree of homology with the Wnt ligand-
binding domains of Fzd, both bind to Wnt ligands, and thereby
function as Wnt antagonists for both b-catenin and noncanonical
signalling9.

MicroRNAs are short RNA sequences that regulate gene expres-
sion by destabilising mRNA and inhibiting mRNA translation10.
Specific microRNAs have been recognised to play a role in the
activation of HSCs through a variety of signalling pathways11,12.
HSC activation involves many signalling pathways such as TGFb/
smads signalling and Wnt/b-catenin pathway13. MiR-17 is reported
to synergistically trigger fibrosis development via its target genes
smad-714 and WIFI15. MiR-17 is increased in carbon tetrachloride
(CCl4)-treated rat liver fibrotic tissues due to the negative role of
smad-7 in TGF-b/smad signalling. Inhibition of miR-17 suppressed
proliferation of HSCs, ECM production and a-smooth muscle actin
(a-SMA) expression induced by TGF-b116. In addition, overexpres-
sion of miR-17–5 and suppression of WIFI enhanced the Wnt/
b-catenin pathway in liver fibrotic tissues; earlier research has
shown that WIFI is a direct downstream target of miR-1715,17.
Recently, miR-378a has been reported to be down-regulated in
fibrotic liver tissues and inhibits HSC activation via targeting of
Wnt-1018. Overexpression of miR-378a resulted in the suppression
of HSC activation including HSC proliferation, a-SMA and type-
I collagen19.

Dasatinib is a second-generation oral multitarget inhibitor of
many tyrosine kinases10,20. Dasatinib was designed to treat some
types of cancers including chronic myeloid leukaemia (CML)21.
Dasatinib has recently been studied for its anti-fibrotic effects in a
variety of fibrous diseases, including systemic sclerosis, lung fibro-
sis, and chronic pancreatitis. Through the TKs/GSK3/b-catenin
pathway, dasatinib inhibits the proliferation and activation of pan-
creatic stellate cells (PSCs)21,22. The current study aims to investi-
gate the potential efficacy and the molecular mechanisms of
dasatinib in the treatment of thioacetamide-induced liver fibrosis
by modulating miR-378 and miR-17 via the Wnt/b catenin and
TGF-/smad pathways.

2. Materials and methods

2.1. Animals

Male albino mice weighing between 15 and 20 g were used in
this study. The Egyptian Company for the Production of Vaccines,
Sera, and Drugs provided these mice (EGYVAC; Cairo, Egypt). Mice

were housed in plastic cages at October University for Modern
Sciences and Arts’ animal house under constant conditions (tem-
perature 25 ± 3 �C and humidity 50%). Free water and standard
pellet chow (El-Nasr Co., Egypt) were available. The study was
approved from the ethics committee of October University for
Modern Sciences and Arts.

2.2. Drugs and chemicals

Dasatinib and thioacetamide were purchased from Sigma-aldrich
(Saint Louis, MO, USA). The other chemicals used were all of ana-
lytical grade.

2.3. Induction of liver fibrosis

For the induction of liver fibrosis, thioacetamide (150mg/kg; i.p)
dissolved in saline was injected three times a week for 6weeks.
The method of induction of liver fibrosis was chosen based on
previous research23,24.

2.4. Experimental design

Mice were categorised into three groups (n¼ 6) at random. The
first set of mice served as the normal control group. thioaceta-
mide (150mg/kg; i.p.) was given to the liver fibrosis control group.
The third group was treated with dasatinib (20mg/kg/day; p.o.)
for 21 days starting from the 4th week of the experiment. Based
on previous research, the dose and route of administration of
dasatinib were determined22.

At the end of the 6th week, blood samples were collected via
the retro-orbital plexus for serum separation and liver enzymes
investigation. Liver enzymes were analysed using commercial kits
(Biodiagnostic; cairo, Egypt).

The mice were then sacrificed via cervical dislocation under
ether anaesthesia, and the livers were quickly dissected out and
washed in ice-cold saline. RNA extraction from the isolated livers
were used for analysis of the expression of miR-378-3p, miR-17-5p,
Wnt-10a, WiF-1, b-catenin, smad-7, smad-3 and collagen-a1
through qRT-PCR. Sections of the isolated livers were fixed in for-
malin and used for the histopathological examination as well as
the investigation of the immunohistochemical reactivity of TNF-a
and a-SMA.

2.5. Quantitative real-time polymerase chain reaction (RT-PCR)

The isolated livers were used for total RNA isolation using Trizol
(Invitrogen; Auckland, New Zealand), according to the manufac-
turer’s instructions and reverse-transcribed into cDNA with the
Reverse Transcriptase M-MLV (Promega, Madison, WI, USA).

Genea Forward primer Reverse primer

U6 CGCTTCGGCAGCACATATACTA CGCTTCACGAATTTGCGTGTCA
Wnt-10a GATGGTGGGGCATCGTGAA GGGTTCTGTCGGATCAGTCG
Col1a1 TAACTTCTGGAATTCGACTTT TTGG GTCCAGCCCTCATCCTGGCC
Smad-7 CTCGGACAGCTCAATTCGGA CAGTGTGGCGGACTTGATGA
Smad-3 TGGCCACTGCTGCTTCCTCTTCTT GGGGCC AGCTTCGTCATACTCCT
WIF-1 GAATTTTACCTGGCAAGCTGCGG GACGGGCTTAGAGCACAGGTCTCC
b-catenin CCGTTCGCCTTCATTATGGA GGCAAGGTTTCGAATCAATCC
miR 17-5p TCTAGATCCCGAGGACTG ATCGTGACCTGAA
miR-378a-3p TGGGGACTGGACTTGGAGTC GTCGTATCCAGTGCAGGGTCCG

AGGTATTCGCACTGGATACGAC CCTTCT
b-actin CTGAGAGGGAAATCGTGCGT TTGTTGGCATAGAGGTCTTTA
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Primer sequences to be used in the experiment were
as follows:

For miRNA quantitative reverse transcriptase PCR, small RNA species-
enriched RNA was isolated according to the manufacturer’s instructions
(mirVana miRNA isolation kit; Ambion, Austin, TX, USA). miRNA was
reverse-transcribed by using Ncode miRNA first-strand complementary
DNA synthesis kits (Invitrogen). Quantitative reverse transcriptase PCR
was performed by using a Power SYBR Green PCR Master Mix on the
CFX96 Instrument (Bio-Rad, USA). Data analysis was determined by
using the relative standard curve method.

2.6. Histopathologic assessment of hepatic tissue damage

The livers from the different groups were fixed in 10% formalin
solution. Sections of the livers were collected on glass slides,
deparaffinised and stained by haematoxylin and eosin stain for
routine histopathological examination using electric light micro-
scope. This is according to the method previously described by JD
Bancroft and M Gamble25.

2.7. Immunohistochemical reaction of TNF-a and a-SMA

Sections from liver tissue of around 3 mm thickness embedded in
paraffin were used for detection of TNF-a and a-SMA through the
immunostaining with primary antibody polyclonal immunoglobu-
lin-G of mice TNF-a and a-SMA according the method previously
described by26. Finally, grading of immunohistochemical reactivity
was measured from four randomly chosen fields in each section
and averaged using image analysis software (Image J, Fiji version;
MD, USA).

2.8. Statistical analysis

Data are presented in the form of mean± SEM. The comparisons
among means of different groups were done via one-way analysis
of variance (ANOVA) and Tukey–Kramer multiple comparisons
post-test 27. Kruskal–Wallis test was used for analysing the histo-
pathological scores and followed by Dunn’s multiple comparisons
test. The level of significance was taken as p ˂ .05. All the statis-
tical tests carried out using GraphPad Prism software package, ver-
sion 5 (GraphPad Software, Inc., USA).

3. Results

3.1. Effect of dasatinib on serum levels of liver enzymes in
liver fibrosis

Thioacetamide resulted in significant increase in the serum levels
of liver enzymes. Alanine transaminase (ALT) was increased by
1.67-fold and aspartate transaminase was increased by 2.44-fold in
the inducted liver fibrosis group compared to the control group.
On the other hand, treatment with dasatinib significantly lowered
the serum levels of ALT by 10.67% and AST by 46.32% compared
to the mice with liver fibrosis (Figure 1).

3.2. Effect of dasatinib on miR-378 and Wnt-10a/b-catenin
signalling in liver fibrosis

The mice with liver fibrosis exhibited a significantly suppressed
expression of miR-378-3p in the liver (with a 67% decrease com-
pared to the control group). This effect was accompanied by a sig-
nificantly elevated expression of Wnt-10a and b-cantenin (475 and
4.64-fold elevation compared to the control group). These effects
were abolished by treatment with dasatinib which significantly
increased the liver expression level of miR-378-3p with 2.24-fold
and decreased the expression level of Wnt-10a and b-cantenin in
the liver by 40.0% and 32.5%, respectively compared to the mice
with liver fibrosis (Figure 2).

3.3. Effect of dasatinib on miR-17 and smad-7/smad-3 signalling
in liver fibrosis

A significant 9.9-fold elevation was observed in the hepatic level
of miR-17-5p in the liver fibrosis group compared to the control
group. On the other hand, treatment with dasatinib significantly
lowered the hepatic level of miR-17-5p by 50.5% compared with
the liver fibrosis mice (Figure 3(A)).

In addition, the results of the current study indicated that the
hepatic level of smad-7 was significantly reduced by 58.0%,
whereas hepatic levels of smad-3 and collagen a1 were raised by
4.5- and 6.3-fold, respectively in the liver fibrosis group compared
to the control group. Conversely, treatment with dasatinib
resulted in a significant 3.1-fold elevation in the hepatic level of
smad-7 and a significant decline in smad-3 and collagen a1 by
49.2% and 51.9%, respectively compared to the liver fibrosis group
(Figure 3(B–D)).

Figure 1. (A, B) Effect of dasatinib treatment on serum levels of the liver enzymes; alanine transaminase (ALT) and aspartate transaminase (AST) in mice with thioace-
tamide-induced liver fibrosis. The data are presented as mean±SEM (n¼ 6). aSignificant difference from the control group; bsignificant difference from liver fibrosis-
inducted group (at p ˂ .05)
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Furthermore, the impact of the modulation of miR-17 was
reflected on the hepatic expression level of WiF-1 that is signifi-
cantly reduced by 62% in the liver fibrosis group compared to the
control group. Treatment with dasatinib significantly elevated the
hepatic expression level of Wif-1 by 3.09-fold compared to
the liver fibrosis group (Figure 3(E)).

3.4. Effect of dasatinib on immunohistochemical reactivity of
TNF-a and a-SMA in liver fibrosis

Liver sections from normal control mice (Figure 4(A)) showed rela-
tively negative expression of a-SMA. Thioacetamide resulted in sig-
nificantly increased expression of a-SMA in the hepatic
parenchyma (Figure 4(B)). The group treated with dasatinib
showed only weak expression of a-SMA in the hepatic tissue
(Figure 4(C)) with no significant difference from the control group.
The immuno-staining for TNF-a revealed weak expression in the
hepatic tissue of the normal control mice (Figure 4(E)). The expres-
sion of TNF-a increased markedly in the hepatocytes surrounding
the central vein and the hepatocytes surrounding the portal area
upon induction of liver fibrosis (Figure 4(F)). Hepatic tissue from
the dasatinib-treated mice showed noticeable suppression in TNF-
a expression (Figure 4(G)). Comparative quantification of the
immunohistochemical expression for a-SMA and TNF-a in hepatic
tissue of mice from all groups is presented in Figure 4(D,H)

expressed as area % of the brown colour according to image
J software.

3.5. Effect of dasatinib treatment on histopathological
alterations of liver

Histological examination of liver sections from control mice
revealed normal histological structures of the central vein and the
surrounding hepatocytes on the parenchyma with no histopatho-
logical alteration (Figure 5(A)). Liver sections from mice received
thioacetamide alone showed degeneration and necrobiotic
changes observed in the hepatocytes and associated with focal
inflammatory cells infiltration in a diffuse manner in between
(Figure 5(B)). Treatment with dasatinib resulted in the presence of
minor degeneration in some hepatocytes with marked improve-
ment from the liver fibrosis-inducted group in addition to the
presence of some inflammatory cells infiltration (Figure 5(C)).
Scoring of the histological observations in the hepatic tissue is
presented in Figure 5(D).

Discussion

Aside from the TGF/smads signalling pathway28, the Wnt/b-cate-
nin pathway has been shown to play a role in stellate cell/

Figure 2. Effect of dasatinib treatment on relative expression of miRNA-378-3p, Wnt-10a and b-catenin in the liver tissue of mice with thioacetamide-induced
liver fibrosis. The data are presented as mean± SEM (n¼ 6). aSignificant difference from the control group; bsignificant difference from liver fibrosis-inducted group (at
p ˂ .05).

Figure 3. (A–E) Effect of dasatinib treatment on relative expression of miRNA-17-5p, smad-7, smad-3, collagen a1 and Wnt inhibitory factor-1 (WIF-1) in liver tissue of
mice with thioacetamide-induced liver fibrosis. The data are presented as mean± SEM (n¼ 6). aSignificant difference from the control group; bsignificant difference
from liver fibrosis inducted-group (at p ˂ .05).
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fibroblast activation and fibrosis in a number of organs, including
the liver, kidney, lung, and pancreas, making it a possible thera-
peutic target for liver fibrosis. Some microRNAs are supposed to
be essential regulators of these signalling pathways and these
hepatic stellate cells activation (HSCs)28–30. The present study
hypothesised that dasatinib would attenuate liver fibrosis and
ameliorate the inflammatory responses. For this purpose, we
investigated the potential efficacy and mechanisms of dasatinib in
the treatment of thioacetamide-induced liver fibrosis in mice
through the modulation of miR-378 and miR-17 that can target
Wnt-10 and WIF1, respectively, and inhibit the Wnt/b-cate-
nin pathway.

Many biological processes are controlled by the interaction of
receptor tyrosine kinase signalling with Wnt/b-catenin signalling,
but the mechanisms of this interaction are still unknown. The role
of various receptor tyrosine kinase systems in activating canonical
Wnt signalling is suggested by the potent activation of Wnt/b-cat-
enin by FGFR2, FGFR3, EGFR, and TRKA kinases.31 Dasatinib is a

second-generation oral multitarget inhibitor of multiple tyrosine
kinases that was originally designed to treat CML. Dasatinib was
recently investigated for having an anti-fibrotic effect in some of
the fibrous diseases, including systemic sclerosis, lung, and pan-
creatic fibrosis22,32. Dasatinib inhibited TGF-induced myofibroblast
differentiation and ECM fibronectin expression in both HFLFs and
NIH3T3 cells, according to Abdalla et al33.

Generally, HSC activation is characterised by the accumulation
of collagens, the enhancement of a-SMA expression and the
increase of cell proliferation34. Wnt-10 overexpression results in
progressive loss of subcutaneous adipose tissue, dermal fibrosis,
and up-regulation of fibrotic gene expression, which increased col-
lagen aggregation and a-SMA expression22. MicroRNAs, have been
implicated in the pathogenesis of many diseases35. In the current
study, we observed that miR-378a expression was markedly
decreased in fibrotic liver tissues, while Wnt-10 expression
increased significantly. Furthermore, the dasatinib-treated group
revealed a significant increase in the miR-378 expression

Figure 4. Immunostaining of a-smooth muscle actin (a-SMA) and tumour necrosis factor-a (TNF-a) in the liver tissue of mice with thioacetamide-induced liver fibrosis
(H&E� 40). (A) a-SMA/control group, (B) a-SMA/liver fibrosis group, (C) a-SMA/dasatinib-treated group, (E) TNF-a/control group, (F) TNF-a/liver fibrosis group, (G) TNF-
a/dasatinib-treated group, (D, H) represent a comparative quantification of the immunohistochemical expression for a-SMA and TNF-a in hepatic tissue of mice from
all groups: The severity of the immunoactivity is depending on the intensity and distribution of the brown colour. aRepresents a significant difference from the normal
control group, ba significant difference from liver fibrosis inducted-group (at p ˂ .05).
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accompanied by marked suppression of Wnt-10 expression in liver
tissue. Thus, we suggest that dasatinib can suppress the HSCs acti-
vation which is a critical event in the development of liver fibrosis
through the markedly increased expression of miR-378a accompa-
nied by the suppression of Wnt-10 expression. Our finding is
matched with another study reported that miR-378a was down-
regulated accompanied by increased activation of HSCs in rats
with CCl4-induced liver fibrosis18. In the current study, the
increased expression of miR-378a-3p upon treatment with dasati-
nib can have a direct role in suppression of the activated HSCs.
This effect was reflected through the significantly decreased levels
a-SMA and type-I collagen as markers for HSCs activation.

Aberrant Wnt/b-catenin pathway contributes to the develop-
ment of liver fibrosis36. Wnt/b-catenin pathway activation contrib-
utes also to HSC activation and ECM accumulation37. In this study,
we demonstrated that miR-17 expression was increased in fibrotic
liver tissues, along with a marked reduction in WIF1 and smad-7
expression levels. Dasatinib inhibits miR-17, resulting in increased
expression of both WIF1 and smad-7, which are miR-17’s targets.
Our findings are consistent with previous research that found
WIF1, a Wnt antagonist, can reduce hepatic fibrosis by inhibiting
the Wnt/b-catenin pathway38. WIF1 was predicted to be a putative
target of miR-17, which induced HSC activation, according to
Peng et al39. Our findings are supported by Yu et al. study, which
found that miR-17 promotes HSC activation by reducing smad-7,
implying that it may be useful as a new therapeutic target for
liver fibrosis14. Smad-7 overexpression inhibits smad-3 phosphoryl-
ation, which decreases TGF-mediated fibrogenesis and protects
against liver damage40, consequently, smad-7 acts as a negative
regulator of HSC activation and hepatic fibrosis. Loss of smad-7
has been reported in fibrotic liver and during HSC activation
induced by TGF-b141.

Our results not only provide a new insight into the role of
miRNA-activated TGF-b1/smad and Wnt/b-catenin signalling in
liver fibrosis but also show a new anti-fibrotic mechanism of dasa-
tinib in liver fibrosis. The current study demonstrates that dasati-
nib can down-regulate miR-17 expression, leading to the

restoration of WIF1 and smad-7 which further cause the inhibition
of both Wnt/b-catenin and TGF-b/smads signalling. In addition,
dasatinib can upregulate miR-378a leading to decrease in Wnt-10
expression which contributes to the suppression of activated
HSCs. To sum up, we suggest that dasatinib can be a potential
therapeutic drug for liver fibrosis due to its crucial role in sup-
pressing various fibrotic signalling pathways and its ability to sup-
press HCS activation and EMC deposition.
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