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Abstract: There is a pressing demand to synthesize polymers that have antibacterial and antifungal
properties. The aim of this study was to synthesize a crosslinked hydrophilic terpolymer with acrylamide,
acrylonitrile, acrylic acid, acrylamido-2-methylpropane sulphonic acid and ethylene glycol dimethacrylate
as a crosslinker. The chemical structure and thermal stability of the prepared cross-linked terpolymers were
confirmed by spectroscopic and thermal analyses. Moreover, the swelling experiments were performed
to investigate their swelling capacity. Furthermore, the efficiency of the synthesized cross-linked polymer
gels was assessed as an antimicrobial agent against Gram-positive, Gram-negative bacteria and fungal
strains. The synthesized polymers showed broad inhibition effect, with more antibacterial activity by the
AM4 polymer sample containing high percentage of acrylonitrile monomer in the prepared terpolymers
(4 mol ratio of acrylic acid: 1 mol ratio of acrylamide: 16 mole ratio of acrylonitrile against Gram negative
bacterial strain), while sample M3 terpolymer (1 mol ratio of acrylamide: 1 mole ratio acrylonitrile:
3 mole ratio of acrylamido-2-methylpropane sulphonic acid) showed a promising anti-fungal activity.

Keywords: polymer; gel terpolymer; cross-linked polymer; anti-bacterial; anti-fungal

1. Introduction

Hydrogels are crosslinked hydrophilic polymeric three-dimensional structures that have the tendency
to absorb enormous volumes of water and other biological fluids [1]. In addition, they possess a high class
of water content, with physical properties as high flexibility similar to soft tissues. The process of dissolving
can be done either by altering the conditions as the pH, the temperature or the ionization of the solution [2].
Crosslinking is a process in the polymer chemistry that results in a network structure depending on a
multi-dimensional extension of a chain polymer by a cross-link, either ionic or covalent, which link a
polymer to another [3]. The cross-linking performances of the polymers can be reversible or irreversible
relying on the nature of the crosslinking [4]. The chemical method is irreversible; however, the physical
and the biological are reversible by the application of stress, electricity, light, pressure, changing pH
or magnetic field [5]. Conventional techniques of polymerization such as the condensation and the
free-radical polymerizations were used mainly for preparation of chemically cross-linked polymers [6].
These chemical crosslinking techniques produce a degradable or a non-degradable cross-linked polymer
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relying on the monomer types (ionic or noni-ionic) and nature of chemical bonds [7]. Moreover,
the cross-linked polymer that could be obtained from these techniques does not impose any difficulties
during their application. This can be attributed to their robust cross-linking ability provided by the
primary forces, whereas the cross-linked polymers that are achieved by the physical cross-linking may
cause some difficulties throughout their application due to their fragile cross-linking provided by the
secondary forces [8]. Bulk polymerization generates cross-linked polymers using one or more kinds
of monomers without solvents and produces heterogeneous networks [9]. More than one monomer,
rather than a crosslinker, was used to obtain copolymers or terpolymers when two or three monomers
were used, respectively [10]. This variety of the monomers permits the production of cross-linked
polymers with desired properties utilized in different applications [10]. Typically, this technique
requires an addition of a small amount of a cross-linking agent during the polymer production [11].
The application of synthetic cross-linked terpolymer in life have abundantly increased through the
recent years, due to their unique characteristics including mechanical strength, longer service life,
the ability to absorb large amounts of water and being biocompatible [10]. The wide variety and the
easily tuned properties of the cross-linked polymers were studied as a promising candidate in various
fields and applications. These can be achieved via alteration of their chemical structure, concentration
or preparation methods that can be suitable in many applications include drug delivery, wound
dressing, contact lenses, cosmetics, tissue engineering and cardiac applications.

The cross-linked polymers work on rupturing the cell membranes of microbial cells, which further
lead to leakage of the cytoplasmic content and death of the cell [12]. Several kinds of anti-microbial
applications of cross-linked polymers have been developed in the recent years [13].

It was previously reported that there are several antimicrobial hydrogels based on natural and
synthetic materials that are suitable for drug delivery in antimicrobial areas [14]. Chitosan cross-linked
polymers have been synthesized and displayed high anti-bacterial and anti-fungal activities [15]. There
are many researchers that have synthesized a cellulose-based cross-linked polymer which exhibited high
mechanical strength, biocompatibility, swelling property and anti-microbial activity against Saccharomyces
cervisiae, whereas the results displayed the possibility of the usage of the cross-linked polymers as
an anti-microbial candidate [16]. Moreover, it was reported that peptide-based cross-linked polymers
had displayed a tremendous anti-bacterial effect. The β-hairpin cross-linked polymer also possessed
an anti-microbial effect [17]. Although the anti-microbial cross-linked polymers have demonstrated a
remarkable activity against microbes, it was found out that the interaction between the polymer and
the cell membrane was nonspecific, thus causing, in most cases, death of the mammalian cells [18].
The biopolymers were widely used due to their natural availability beside their bioactivity. The synthetic
crosslinked polymers require attention to select the desired monomers having lower toxicity and higher
biological activity. Recent works proved that the combination of synthetic anti-microbial polymers
and antibiotics was used to evade problems of drug resistance [14]. In this research, new crosslinked
polymers were prepared in order to utilize the cross-linked polymer as an anti-microbial agent to
decrease the toxicity associated [19]. The synthetic antimicrobial hydrogel based on polyvinyl alcohol
and polyvinyl-pyrrolidone having excellent swelling capacities was applied in wound therapy with
great ability to enhance epithelialization and reduce loss of skin grafts [20]. There are thermoresponsive
hydrogels based on N-isopropylacrylamide that exhibited strong anti-microbial activity, which,
besides their high biocompatibility with cells, were used for biomedical application [14,21]. It was
previously reported that the anti-microbial crosslinked copolymeric hydrogels based on acrylamides
were prepared by radical crosslinking polymerization technique [21,22]. In this respect, the investigation
of anti-microbial and anti-fungi activities of new hydrogels rather than crosslinked homopolymers
or copolymers will offer antimicrobial hydrogels that can be used for drug delivery in antimicrobial
areas. In the present work, different terpolymers were synthesized based on monomers, acrylonitrile
(AN), acrylic acid (AA), acrylamide (Am), 2-acrylamido-2-methylpropane sulfonic acid (AMPS),
benzoyl peroxide (BP) as an initiator and ethylene glycol dimethacrylate (EGDMA) cross-linker. These
monomers were selected on the basis of their reactivity ratios to obtain neutral and ionic terpolymers.
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Moreover, EGDMA was selected as a reactive crosslinker to control the crosslinking densities of the
prepared terpolymers. The objective of this study was to test the efficacy of the synthesized cross-linked
terpolymer gels as anti-bacterial agents against Gram-positive and Gram-negative bacteria in addition
to their anti-fungal activity.

2. Experimental

2.1. Materials

Acrylonitrile, acrylic acid, 2-acrylamido-2-methylpropane sulfonic acid (AMPS), benozyl peroxide,
acrylamide, ethylene glycol dimethacrylate crosslinker and ethanol were received from Sigma-Aldrich
Chemicals Co (Missouri, MO, USA). Trypticase soy broth (TSB) or trypticase soy agar (TSA) (Difco
Co; Becton Dickinson, Sparks, MD, USA) were used for cultivation for bacterial strains. Sabouraud
dextrose broth (SDB) or Sabouraud dextrose agar (SDA) (Difco, Sparks, MD, USA) were used for fungal
strain cultivation.

2.2. Preparation of Cross-Linked Polymers

Nine terpolymers with different concentration ratios were synthesized, and their constituents are
shown in Table 1. The sample defined as (AM0) was prepared by the addition of AA (80 mol %; 0.72 g)
and AMPS (20 mol %; 0.515 g) in the presence of EGDMA (1 Wt.% related to monomers weight), BP
(0.1089 g) and distilled water (50 mL). The sample (AM1) was prepared as AM0 in the presence of AN
(0.53g) as the third monomer (mole ratio of AA: AMPS:AN is 4:1:4). The samples AM2, AM3 and AM4
were prepared using the same ingredients as (AM1) but with different concentrations of AN, which
were 1.06, 1.59 and 2.12 g, respectively. AM1, AM2, AM3 and AM4 moles ratios of AA: AMPS:AN
are 4:1:4, 4:1:8, 4:1:12 and 4:1:16, respectively. The second batch of the samples was consisted of five
samples (M0, M1, M2, M3 and M4). The sample (M0) was prepared by the addition of Am (50 mol %;
0.78 g), AN (50 mol %; 0.53 g), EGDMA (1 Wt.% related to monomers weight), BP (0.1089 g) and
distilled water (50 mL). The sample (M1) was prepared using AMPs (0.515 g), Am (0.78 g) and AN
(0.53 g) and the same concentrations of BP, EGDMA solubilized into distilled water (50 mL). The mole
ratio of AMPS: Am:AN: is 1:1:1. The samples M2, M3 and M4 were prepared using the same ingredients
that were used in M1 but with different concentrations of AMPS, Am and AN, which were 2:1:1, 3:1:1
and 4:1:1 Wt.%, respectively. All solutions were stirred for 15 min until the solutions became clear
under N2 atmosphere and sealed in test tubes. The solutions were placed in an oven at 85 ◦C for 4 to
5 h. After obtaining the cross-linked terpolymers were rinsed in distilled water in order to remove any
unreacted monomers and were then followed by filtration and drying of the gel in vacuum oven and
storing them for later evaluations.

2.3. Characterization by FTIR (Fourier Transform Infrared) Spectroscopy

The Fourier Transform Infrared Spectroscopy (FTIR; PerkinElmer 2000 FT-IR spectrometer,
Waltham, MA, USA) was used to characterize the structural arrangement and the functional groups of
the cross-linked polymer. The samples were prepared in a pellet form and diluted using KBr with
1/200 (w/w) of samples/KBr. The thermal stability of the crosslinked polymers was obtained using
thermogravimetric analysis (TGA; NETZSCH STA 449 C instrument, New Castle, DE, USA) with a
temperature rate of 10 ◦C/min, under dynamic flow of nitrogen 20 mL/min.

2.4. Swelling Property Measurement

The cross-linked polymers were sliced to 2 mm thickness and 3 mm diameter. Furthermore,
the dried gels were left to swell in distilled water at temperature of 25 ◦C for one day to achieve the
equilibrium swelling. The swollen cross-linked polymer gels were removed from the water after 5 min,
10 min and 20 min up to 110 min; then, the gels were dried using filter paper, weighed and placed back
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in the water. The measurement of the degree of swelling continued until a constant weight was achieved
for each sample. The swelling degree in g/g of each gel was calculated as the following relation:

Degree of swelling g/g =
(Wet weight−Dry weight)

Dry weight
(1)

Table 1. Illustrates the constituents of the prepared samples.

Sample Name Description Mol Ratios

AM0 Contains AA (80 mol %; 0.72 g) and AMPS (20 mol %; 0.515 g). AA:AMPS (4:1)

AM1 Contains the same reagents as AM0 in the presence of AN (0.53 g) AA:AMPS:AN (4:1:4)

AM2 Contains the same reagents as AM1 but differed in the
concentration of acrylonitrile, which was 1.06 g/mol. AA:AMPS:AN (4:1:8)

AM3 Contains the same reagents as AM2 but differed in the
concentration of acrylonitrile, which was 1.59 g/mol. AA:AMPS:AN (4:1:12)

AM4 Contains the same reagents as AM3 but differed in the
concentration of acrylonitrile, which was 2.12 g/mol. AA:AMPS:AN (4:1:16)

M0 Contains acrylonitrile (AN) (50 mol %; 0.53 g) and acrylamide
(Am) (50 mol %; 0.78 g). AMPS:AN (1:1)

M1 Contains AMPs (0.515 g), Am (0.78 g) and AN (0.53 g). AMPS: Am:AN (1:1:1)

M2
Contains the same reagents as M1 but differed in the

concentrations of the 2-acrylamido-2-methylpropane sulfonic
acid (AMPS), which was 1.03 g/mol.

AMPS: Am:AN (2:1:1)

M3
Contains the same reagents as M1 but differed in the

concentrations of the 2-acrylamido-2-methylpropane sulfonic
acid (AMPS), which was 1.545 g/mol.

AMPS: Am:AN (3:1:1)

M4
Contains the same reagents as M1 but differed in the

concentrations of the 2-acrylamido-2-methylpropane sulfonic
acid (AMPS), which was 2.06 g/mol.

AMPS: Am:AN (4:1:1)

2.5. Application of the Synthesized Cross-Linked Terpolymers as Anti-Microbial Agents

2.5.1. Test Organisms

Gram-positive bacteria: Bacillus subtilis (ATCC 6633), Gram-negative bacteria: Escherichia coli
(ATCC 8739) and Candida albicans (ATCC 10231) were obtained from the American Type Culture
(ATCC; Rockville, MD, USA).

2.5.2. Cultivation Conditions and Anti-Microbial Activity

The anti-microbial activity test of the superabsorbent cross-linked terpolymers were carried out
under aseptic techniques using the modified agar well diffusion method. The Gram-positive and
the Gram-negative bacterial strains, Bacillus subtilis (ATCC®® 6633) and Escherichia coli (ATCC®®

8739), were streaked on trypticase soy agar (TSA) plates using a loop wire, while the fungal strain
Candida albicans (ATCC®® 10231) was streaked on a sabouraud dextrose agar (SDA) plate. Then,
a sterile 10 mm Cork borer was used in order cut two well pores in each agar plate. Furthermore,
the cross-linked terpolymers (100 µL of M3 and AM4) were introduced into the cut wells that were
inoculated with bacterial and the fungal strains. Then, the plates were left to incubate for overnight at
37 ◦C and for 48 h at 35 ◦C regarding the bacterial strains and the fungal strain, respectively. Afterwards,
the anti-microbial activity was assessed by measuring the diameter (mm) of the inhibition zone formed
around the cross-linked polymers in three different fixed directions. The growth pattern of the microbes
in the presence or absence of the polymers was compared using sterile water as a negative control,
and standard antibiotics. Tetracycline (TE) (100 ppm), amoxicillin (AMC) (100 ppm) and Fluconazole
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(Flu) (100 ppm) were used as positive controls. Duplicates were sustained for each sample and the
inhibition zone measurement was repeated twice.

2.5.3. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal/Fungicidal
(MBC/MFC) Concentrations

“The minimum inhibitory (MIC) concentrations” [23] of the cross-linked terpolymers (M3 and
AM4) were estimated using a two-fold micro dilution method in 96-well micro-titer plates with
modifications [24]. The bacterial and fungal strains-inocula were prepared as the Clinical Laboratory
Standards Institute (CLSI) method reported [25,26]. The bacterial inocula were 1–2 × 108 CFU/mL for
Gram-positive bacteria (Bacillus subtilis) and 1–2 × 109 CFU/mL for Gram-negative bacteria (Escherichia
coli) and fungal inoculum was composed of 5 × 106 CFU/mL. In total, 100 µL of the cross-linked
terpolymers (M3 and AM4) were serially diluted onto the micro-titer plates using trypticase soy broth
(TSB) and sabouraud dextrose broth (SDB) for the bacterial strains and the fungal strain, respectively,
and further inoculated with 100 µL of the microbial inocula parallel with a positive-control (inoculated
without the cross-linked terpolymers (M3 and AM4)) and a negative-control (only sterile media).
Afterwards, the micro-titer plates were incubated under aerobic conditions for an incubation period of
20 h at 37 ◦C and 48 h at 35 ◦C for the bacteria and the fungal strains, respectively. Following [27],
“the MIC was determined as the lowest concentration of the cross-linked terpolymers (M3 and AM4)
that inhibits the development of visible bacterial, and fungal growth on cultivated media after an
incubation period.”

In order to estimate “the minimum bactericidal/fungicidal concentrations (MBC/MFC)” of the
cross-linked terpolymers (M3 and AM4) “needed to indicate 99.5% killing of the original inoculum,”
10 µL was taken from the wells with no observed growth and further sub-cultured onto their agar
media (TSA and SDA for bacterial and fungal strains, respectively) [28].

3. Results and Discussion

The reactivity ratios of AA (M1) with AN (M2) are r1 = 1.188 and r1 = 0.057 form block copolymer
in the presence of K2S2O8 as initiator in aqueous solution that reduced the reactivity of AN [28].
The reactivity ratio of AN (M2) with AMPS (M3) are r2 = 0.193 and r3 = 0.162 indicates that the reactivity
of AN towards copolymerization was increased by the incorporation of AMPS as well as AMPS/AA.
Therefore, at all the compositions of the initial monomer mixture the copolymers are enriched in AA
units. The radical polymerization of Am with AN and AMPS forms random terpolymers with uniform
distribution of AMPS and AN unit along the macromolecular chain to reduce the hydrodynamic
resistance to aqueous flow that increased its usefulness as a drag reducing additive to extract the oil [28].
The samples AM0, AM1, AM2, AM3 and AM4 were designed to stabilize the moles contents of AMPS
and AA and increases AN contents to increase the nitrogen contents in the crosslinked polymers that
enhanced by the crosslinking polymerization of AMPS/AN. It was previously reported that the presence
of quaternary nitrogen and crosslinking using EGDMA will increase the mechanical stability of the
crosslinked polymers beside increasing biocidal activities [29]. The crosslinking of materials improves
their easy separation, recovery and antimicrobial activity [30]. Moreover, antimicrobial polymers can
destroy the bacterial membrane that may help to prevent antibiotic resistance [31]. The samples of M0,
M1, M2, M3 and M4 also were designed on the basis of increasing nitrogen contents with increasing
the Am and AN contents in the terpolymers AMPs/Am/AN. In this respect, the crosslinking scheme
of AA/AMPS/AN or AMPS/Am/AN in the presence of EGDMA as crosslinker were represented in
Scheme 1.

3.1. Characterization of the Crosslinked Terpolymers

The FTIR analysis was used to illustrate the structural and the functional groups of the cross-linked
polymer samples based on AA/AMPS/AN (AM) and AMPS/Am/AA (M). In this respect, FTIR spectra of
AM1, AM4 and AM2 were selected and represented in Figure 1a–c to illustrate the effect of increasing
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AN contents in the monomer feedstock on the chemical structures of the cross-linked terpolymers.
Figure 2a–d represents the effect of increasing Am/AN contents on the chemical structures of crosslinked
M terpolymers. The intensity CN stretching vibration bands at 2240 cm−1 were used to confirm that
the AM4 (Figure 1c) has higher AN contents more than that obtained for AM1 (Figure 1a) and AM2
(Figure 1c). The broad band ranged from 3435 to 3600 cm−1 demonstrated the stretching vibration of
–NH and COOH was appeared in all AM spectra to confirm the incorporation of AA and AMPS in
terpolymer structures (Scheme 1 and Figure 1a–c). The disappearance of =CH stretching vibration and
appearance of aliphatic CH stretching vibration at 2926 and 2855 cm−1 elucidate the crosslinking radical
polymerization of AA/AMPS/AN (Figure 1a–c). The band at 1750 cm−1 assigned for the stretching
vibration of the C=O ester bond confirms the incorporation of EGDMA crosslinker in the chemical
structures of terpolymers (Figure 1a–c). Moreover, the band at 1300 cm−1 and 650 cm−1 assigned the
asymmetric stretching of S=O and S-C bonds, respectively, elucidates the incorporation of AMPS in
terpolymers (Figure 1a–c).Materials 2020, 13, x 6 of 14 
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The FTIR spectra of M polymer (Figure 2a–d) elucidate that the incorporation of AMPS in the polymers
M4 (Figure 2a), M2 (Figure 2b) and M3 (Figure 2c) increases the intensity of CN stretching vibration
by 2312–2350 cm−1 compared to M0 (Figure 2d, AN/Am copolymer) as designed. The characteristic
bands related to AMPS and AN represented in the previous section of AM samples were appeared in
spectra of AMPS/Am/AN (Figure 2a–c). The C=O stretching vibration band of Am and AMPS appeared
at 1645–1668 cm-1 in M polymer spectra (Figure 2a–d).

The thermal stability data of the M and AM polymers were determined from their TGA thermograms
and represented in Figure 3a,b, respectively. It was previously reported that the resistance of AMPS/AN/Am
linear terpolymer to salt and temperature were affected by the terpolymer compositions [32]. It was
observed that the heating of linear AMPS/Am/Am terpolymer produced crosslinked polymers due to
cyclization of amide groups with the formation of six membered imide rings [32]. It was also found that
the lowering of AMPS and AN moles contents relative to Am increases the terpolymer resistance to
thermal degradation. Moreover, increasing of AMPs content more than AN improve the terpolymer
thermal stability and resistance to hydrolysis under hydrothermal conditions due to manifestation
of the electrostatic effect [32]. These results agree with our recorded data for M samples. It was
noticed that the cross-linked AN/AM copolymer (M0) and AMPS/Am/AN terpolymer (M4) did not
loss any weight at temperature below 120 ◦C rather than M1–M3 (Figure 3a) that lost approximately
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10 Wt.% from their original weights. This Wt.% was related to humidity adsorbed by gels that reduced
with the absence of AMPS (M0) and increasing Am/AN ratios (M4). The AMPS contains amide and
sulfonic groups that increase their bonding with water humidity. Moreover, it was also noticed that
the initial degradation temperatures (IDT) of terpolymers were increased with increasing of Am/AN
contents and lowering AMPS contents. IDTs of M1, M2, M3 and M4 were recorded as 245, 320, 285 and
350 ◦C, respectively. The increasing of AMPs content in M1 reduces the thermal stability of crosslinked
Am/AN copolymer (M0) that was degraded at IDT of 280 ◦C (Figure 3a). The sulfonic group of AMPS
increases the polymer degradation. The increasing of Am/AN contents increases the remained residual
percentage (RS %) above 650 ◦C for M4 > M3 > M2 > M1 > M0. The RS % values above 650 ◦C of M4,
M3, M2, M1 and M0 are 35, 26, 22, 12 and 2 Wt.%, respectively. The RS % were referred due to intra-
and intermolecular condensation of amide groups of the AMPS and Am at elevated temperatures with
the formation of six-membered imide rings, which results in their cross-linking through intermolecular
cyclization with the formation of a three-dimensional structure. This observation was proved from
increasing of the RS % of M samples with increasing Am/AN contents (Figure 3a). Moreover, the RS %
of AM samples (Figure 3b) were decreased than that recorded with M samples due to replacement of
Am with AA. The presence of AA in the AM samples reduces both IDT and RS % of AM samples due
to decarboxylation of COOH groups that increases the thermal degradation of terpolymers without
formation of crosslinked rings such as that obtained with M samples.
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3.2. Swelling Analysis Measurements

It is very important to investigate the swelling and water uptake of the crosslinked polymer that
can be used for biocide or antimicrobial biofilms to investigate the effect of water uptake on the gel
shapes, and mechanical stability without the addition of biocidal species [31]. In this respect, the photos
of the swelled gels were represented in Figure 4 to confirm the mechanical and shape stability of
M and AM samples. The results of the swelling capacities or water absorbance versus times for all
prepared samples were represented in Figure 5a,b. It was noticed that the swelling of the cross-linked
terpolymers M1–M4 and AM1–AM4 were increased more than that obtained for AA/AMPS (AM0
and AN/Am (M0)) cross-linked copolymers (Figure 5a,b). It was also demonstrated that the swelling
ability of the cross-linked terpolymer samples was increased by increasing the concentration of the
acrylamide and the acrylonitrile without release or solubilization of the cross-linked polymer to confirm
the crosslinking of terpolymers. The highest swelling was achieved for M samples (Figure 5a) at 85.7
for the sample M4 which occurred when the concentrations of the total weight of AMPS, Am and AN
were increased to 2.06, 3.12 and 2.12 g, respectively. In the second batch of the samples (Figure 5b; AM0,
AM1, AM2, AM3 and AM4), the cross-linked polymer samples were prepared with same ingredients
with different AN contents, where the highest swelling was achieved in the sample AM4 of 97.33 due
to the increasing of the AN weight contents increased from 1.59 to 2.12 g. The swelling was tested for
the cross-linked polymer samples with different ratios of acrylamide, the result of the swelling was
63.8 for the acrylamide ratio of 50%; however, upon increasing of the acrylamide content ratio from
50% to 66%, the swelling achieved was 123.57, which was then decreased to 78.550 over time. Thus,
this proves that the swelling behavior can be controlled by changing the content of the monomers.
However, it was reported that the swelling behavior of the cross-linked polymers that were made based
on the free radical polymerization was different due to varying ratios of acrylamide and acrylonitrile
(Am/AN) [33]. The swelling was decreased with the increasing the cross-linking ratio due to the
acrylonitrile (AN) concentrations, while the polymer that was composed of higher acrylamide Am
content has shown a higher swelling property in comparison to the polymer that has a higher content
of acrylic acid (AA), which was inconsistent with the present results. Furthermore, a study was done
using cross-linked polymers with different ratios of acrylamide, whereas the ratios for the Am were
40%, 50%, 60% and 80%. The experimental result regarding the effect of the Am on swelling was found
to be that the swelling of the gel increased from 3.10 to 3.50 when the Am content ratio was increased
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from 40% to 50%, and when further increased from 50% to 80%, the ratio of the swelling considerably
increased from 5.46 reaching 14.10. Thus, this indicates that the swelling ratio increases with the
substantial increasing of the acrylamide ratio, attributed to the increased proportion that allows more
effective binding sites to be available in the polymer chain [34]. It can also be concluded that the
increasing of the water absorbance increased for terpolymers due to lowering of the crosslinking
densities and higher reactivity of monomers towards terpolymerization rather than polymerization
with EGDMA crosslinker.
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3.3. Antimicrobial Activity

The result represents the agar well diffusion plates that were inoculated with the test micro-organisms
(Bacillus subtilis, Escherichia coli and Candida albicans) followed by the introduction of the cross-linked
terpolymer samples (M3 and AM4) where (a) represents the M3 polymer sample and (b) represents
the AM4 sample. AM4 was selected due to its higher swelling in water (Figure 6b) besides the
higher AMPS and AA contents that facilitate binding of polymers with anionic bacterial membrane
due to electrostatic interactions. M3 was also selected due to the moderate molar ratio of AMPS
to AN and Am monomers and moderate swelling characteristics (Figure 6a). The anti-microbial
activity of the superabsorbent cross-linked terpolymers (M3 and AM4) against the Gram-positive
bacterial strain (Bacillus subtilis), Gram-negative bacterial strain (Escherichia coli) and the fungal strain
(Candida albicans) is stated in Table 2. The synthesized cross-linked polymers displayed a broad
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range of anti-bacterial and anti-Candida activity with the clearing inhibition zones ranging from
22–35 mm compared to the standard antimicrobial agents. Moreover, the cross-linked terpolymers
(M3 and AM4) represented a higher anti-bacterial activity against the Gram-positive (25.5–35 mm)
than for the Gram-negative bacteria (22–25.5 mm). This result might be in attribution to the cell
wall differences between the Gram-negative and the Gram-positive bacteria [35]. As the cell wall of
the Gram-positive bacteria is fully composed of peptide poly-glycogen, which is made up of many
pores that allow the diffusion of the foreign molecules into the cell without strain [36]. The M3 cross-
linked terpolymer has demonstrated the lowest anti-bacterial activity, while the AM4 cross-linked
terpolymer has displayed the highest anti-bacterial. The cross-linked polymer AM4 result regarding
the fungal strain (Candida albicans) was 32.5 mm, while the cross-linked polymer compound M3 showed
activity of 33 mm. Furthermore, this proved that all the cross-linked terpolymers had demonstrated
anti-bacterial and anti-fungal activity, with the highest anti-candida activity being the M3 cross-linked
polymer and the highest for the anti-bacterial activity being the AM4 cross-linked polymer compound.
The minimum inhibitory concentration (MICs), minimum bactericidal concentration (MBCs) and
minimum fungicidal concentration (MFCs) of the superabsorbent cross-linked terpolymers (M3 and
AM4) were listed in Table 3. The AM4 cross-linked polymer has exhibited the lowest MIC/MBC
of (15.62/62.5 ppm), (15.62/62.5 ppm) and (15.6/31.2 ppm) compared to M3 cross-linked polymer
compound of (31.25/62.5 ppm), (31.25/62.5 ppm) and (15.6/31.2 ppm) against Bacillus subtilis, Escherichia
coli and Candida albicans, respectively. This result was attributed to the fact that increases content of
AA and AMPS moiety, which leads to reduced pH value [37]. The reduction in the pH values is a
well-known phenomenon to cause stress on the cells, discrupting the cells’ homeostasis [38]. In addition,
sustained exposure to increased acid concentrations would result in cell membrane destruction [39].
Consequently, it renders the cell to being attacked by small fatty acids, which can eradicate the bacteria
relying on the concentration of the acids and the value of the pH [38]. Moreover, it has been reported
that some acids are identified to be an anti-fungal and anti-viral agent, such as ferulic acid, which has
strong anti-fungal activity [40]. Furthermore, it is interesting to note that the polymeric sample (AM4)
exhibited high anti-bacterial activity, which agrees with the study of [41]. In addition, it has been shown
that the inhibitory effect of the cross-linked terpolymer samples were increased with the increasing the
amounts of both the acrylic acid and the acrylonitrile monomers [39]. In addition, it may also be due to
the swelling ability of the cross-linked polymers, which enhances the diffusion of the active monomers
inside the pathogen, which leads to an enzyme disturbance, which is responsible for growth, thus
destroying the pathogenic microorganisms. Whereas with increasing acid concentrations, the swelling
ability of the cross-linked polymer increases, thus improving contact surface of the microorganism and
the polymer samples [42]. It was also reported that the binding of the chitosan with DNA acquired
from a microorganism was eventually result in inhibition of the mRNA and protein synthesis through
penetrating the nucleus of the microorganism by the activity of the chitosan [43,44].

Table 2. The antimicrobial (anti-bacterial and anti-fungal) of the cross-linked terpolymer compounds
(M3 and AM4). The result was described as the mean of the inhibition zones diameter (mm) with
standard deviations (SD).

Samples Bacillus Subtilis
(ATCC 6633)

Escherichia Coli
(ATCC 8739)

Candida Albicans
(ATCC 10231)

Inhibition zone (mm)

M3 25.5 ± 0.5 22.0 ± 0.0 33.0 ± 0.0
AM4 35.0 ± 1.0 25.5 ± 0.5 32.5 ± 0.5

* AMC (100 ppm) 18
* TE (100 ppm) 22
* Flu (100 ppm) 17

* AMC, amoxicillin, TE, Tetracycline, Flu, Fluconazole.
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Figure 6. Agar diffusion method: (a) agar well diffusion method using M3 cross-linked terpolymer
compound as the gel sample for testing the anti-biological effect on test microorganisms (Bacillus
subtilis, Escherichia coli and Candida albicans), and (b) agar well diffusion method using AM4 cross-linked
terpolymer compound for testing the anti-microbial effect on the test micro-organisms.

Table 3. The minimum inhibitory concentrations (MICs), the minimum bactericidal concentrations
(MBCs) and the minimum fungicidal concentrations (MFCs) of the cross-linked terpolymer compounds
(M3 and AM4) against different standard bacterial and fungal strains. The result is represented as the
mean of the samples concentrations as part per million (PPM).

Samples Bacillus Subtilis
(ATCC 6633)

Escherichia Coli
(ATCC 8739)

Candida Albicans
(ATCC 10231)

MIC
(PPM)

MBC
(PPM)

MIC
(PPM)

MBC
(PPM)

MIC
(PPM)

MFC
(PPM)

M3 31.25 62.5 31.25 62.5 15.6 31.2

AM4 15.62 62.5 15.62 62.5 15.6 31.2

4. Conclusions

Based on the reported results in this study, it was concluded that the cross-linked hydrophilic
terpolymer gel samples were promising candidates to be used in the anti-bacterial and anti-fungal
applications. The polymeric sample (AM4) has established the highest anti Gram-positive bacterial
activity ranging from 25.5 to 35 mm, while the M3 gel sample has displayed the highest anti-fungal
activity result of 33 mm. Thus, this proves that the cross-linked polymers are seen as a powerful
tool for various medical applications, such as wound dressings, urinary tract coatings, contact lenses,
treatment of osteomyelitis, catheter-associated infections, gastrointestinal infections and so on.
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