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Abstract

Background: Inflammatory breast cancer (IBC), a particularly aggressive form of breast cancer, is characterized by cancer
stem cell (CSC) phenotype. Due to a lack of targeted therapies, the identification of molecular markers of IBC is of major
importance. The heparan sulfate proteoglycan Syndecan-1 acts as a coreceptor for growth factors and chemokines,
modulating inflammation, tumor progression, and cancer stemness, thus it may emerge as a molecular marker for IBC.

Methods: \We characterized expression of Syndecan-1 and the CSC marker CD44, Notch-1 & -3 and EGFR in carcinoma
tissues of triple negative IBC (n = 13) and non-IBC (n = 17) patients using gPCR and immunohistochemistry. Impact of
siRNA-mediated Syndecan-1 knockdown on the CSC phenotype of the human triple negative IBC cell line SUM-149 and
HER-2-overexpressing non-IBC SKBR3 cells employing gPCR, flow cytometry, Western blotting, secretome profiling and
Notch pharmacological inhibition experiments. Data were statistically analyzed using Student’s t-test/Mann-Whitney U-test
or one-way ANOVA followed by Tukey's multiple comparison tests.

Results: Our data indicate upregulation and a significant positive correlation of Syndecan-1 with CD44 protein, and
Notch-1 & -3 and EGFR mRNA in IBC vs non-IBC. ALDH1 activity and the CD44CD24™"" subset as readout of a CSC
phenotype were reduced upon Syndecan-1 knockdown. Functionally, Syndecan-1 silencing significantly reduced 3D
spheroid and colony formation. Intriguingly, gPCR results indicate downregulation of the IL-6, IL-8, CCL20, gp130

and EGFR mRNA upon Syndecan-1 suppression in both cell lines. Moreover, Syndecan-1 silencing significantly
downregulated Notch-1, -3, -4 and Hey-1 in SUM-149 cells, and downregulated only Notch-3 and Gli-1 mRNA in SKBR3
cells. Secretome profiling unveiled reduced IL-6, IL-8, GRO-alpha and GRO a/b/g cytokines in conditioned media of
Syndecan-1 knockdown SUM-149 cells compared to controls. The constitutively activated STAT3 and NFkB, and
expression of gp130, Notch-1 & -2, and EGFR proteins were suppressed upon Syndecan-1 ablation. Mechanistically,
gamma-secretase inhibition experiments suggested that Syndecan-1 may regulate the expression of IL-6, IL-8, gp130,
Hey-1, EGFR and p-Akt via Notch signaling.
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Conclusions: Syndecan-1 acts as a novel tissue biomarker and a modulator of CSC phenotype of triple negative IBC via
the IL-6/STAT3, Notch and EGFR signaling pathways, thus emerging as a promising therapeutic target for IBC.
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Background
Inflammatory breast cancer (IBC), the most aggressive
form of breast cancer, represents approximately 2.5% of
newly diagnosed breast cancers in the United States [1].
This percentage reaches an even higher level of 5-10%
of breast cancer cases in North African countries such
as Tunisia, Morocco, and Egypt [2, 3]. IBC is a unique
disease characterized by erythema, edema of the breast,
a “peau d’'orange” and formation of lymphatic tumor em-
boli [4—6]. IBC patients have a poor survival rate with a
median of 3 years compared with non-IBC [1] with no
currently available targeted therapies. Based on the
surrogate markers estrogen receptor or progesterone
receptor (ER/PR) status and human epidermal growth
factor receptor (HER)-2 expression, breast cancer can be
classified into ER* (ER*/PR" and HER-27), ER"HER-2*
(ER"/PR" and HER-2"), HER-2" (ER"/PR™ and HER-2"),
and triple negative (ER"/PR™ and HER-2") [7, 8]. IBC
possess the same molecular subtypes as non-IBC [9, 10],
with more than 50% being reported as ER”, 36-60%
HER-2%, and 30% triple negative according to a multi-
national IBC registry [1, 4]. Therefore, the percentage of
triple negative breast cancer is higher for IBC compared
to non-IBC cases [7, 11, 12]. Several lines of evidence
indicate that the aggressive phenotype of IBC is due to
enrichment for chemo- and radioresistant cancer stem
cells (CSCs) [13]. These cells are characterized by self-
renewal, unlimited and high proliferative potential, expres-
sion of multidrug-resistance proteins, efficient DNA repair
capacity and apoptosis resistance [14, 15]. Using flow cy-
tometry, CSCs can be distinguished from the bulk of the
tumor by their expression of cell surface makers CD44 and
CD24 (as a CD44™CD24"°") subpopulation) and based
on the activity of ALDH1 [16]. Due to their functional link
to therapeutic resistance, CSCs represent an attractive
therapeutic target to dampen tumor recurrence [15, 16].
Syndecan-1 (CD138), a cell surface heparan sulfate
proteoglycan, emerges as a candidate target for IBC. It
acts as a coreceptor for a multitude of biological factors
like growth factors, angiogenic factors, cytokines and che-
mokines [17-21]. Dysregulated expression and a potential
role of Syndecan-1 as a modulator of cell proliferation and
invasive growth have been demonstrated in different
tumor entities including breast cancer [22-26]. The func-
tion and (de)differentiation state of CSCs are substantially
modulated by many interconnected signaling pathways
e.g. IL-6/STAT3, Hedgehog, WNT and Notch signaling

that emerge as relevant therapeutic targets [27, 28]. Inter-
estingly, we and others uncovered the regulatory role
played by Syndecan-1 in IL-6/STAT3 and WNT signaling
in the human triple negative (MDA-MB-231) and
hormone-receptor positive (MCF-7) non-IBC cell lines
[16], and in Syndecan-1- knockout mice [29, 30]. While
these data suggest that a therapeutic targeting of
Syndecan-1 may be a mean of synchronously interfering
with multiple relevant pathogenetic routes, the precise
role of Syndecan-1 in modulating IBC pathogenesis and
its CSC phenotype is still unexplored.

The cell surface epidermal growth factor receptor
(EGFR) is overexpressed in approximately 50% of
triple negative IBC [31]. Patients with EGFR-positive
tumors are characterized by lower survival rates and
are associated with the risk of higher tumor recur-
rence [32, 33]. EGFR and/or HER-2 overexpression,
and MAPK hyperactivation lead to activation of NF«xB
associated with ER downregulation in IBC specimens
[34]. Moreover, a significantly positive correlation be-
tween EGFR and CD44 expressions exists in breast
invasive ductal carcinoma patients and that is associ-
ated with the worst prognosis [35]. Interestingly, in a
study of 230 surgical specimens of primary colorectal
carcinoma, epithelial positive Syndecan-1 immuno-
staining was significantly associated with tumor size
and EGFR expression [36].

In this study, we examined the expression of
Syndecan-1 and its correlation with the CSC marker
CD44, Notch-1 & -3 and EGFR expression in carcinoma
tissues of triple negative IBC and non-IBC patients. We
further employed siRNA-mediated Syndecan-1 knock-
down in the human IBC cell line SUM-149 and HER-2
overexpressing non-IBC SKBR3 cells to decipher its im-
pact on a CSC phenotype (CD44”CD24"°") and
ALDH1" subpopulations). Of particular importance,, we
studied the expression and activity of several distinct
signaling pathways relevant for CSC function to address
possible underlying molecular mechanism(s) for this ef-
fect. Supported by an unbiased cytokine array screening
approach, we specifically tested the effect of Syndecan-1
depletion on inflammatory signaling, including the IL-6/
STATS3 signaling pathway [37-39]. Furthermore, we in-
vestigated a potential impact on the stemness-associated
Notch and EGFR pathways [35, 39]. Our data demon-
strate that Syndecan-1 expression is higher in tissues of
triple negative IBC than that in non-IBC. Further,



Ibrahim et al. Molecular Cancer (2017) 16:57

Syndecan-1 is a modulator of the CSC phenotype of IBC
via IL-6/STAT-3, Notch and EGFR signaling. Therefore,
Syndecan-1 may act as a novel marker for this disease
and its targeting could have therapeutic implications for
IBC patients.

Methods

Antibodies and reagents

The antibodies against p-STAT3%7%%, STAT-3, p-NF«B-
p655279)  NFkB-p65, p-Akt®#73) Akt and CD44
(clone 156-3-c11) were from Cell Signaling Technology,
Inc. (Beverly, MA, USA), gp130 antibody was purchased
from R&D Systems (Minneapolis, MN, USA). Anti-
human Notch-1 and EGFR antibodies were from Santa
Cruz Biotechnology (Santa Cruz, CA, USA), anti-
human-CD44-FITC, anti-human-CD24-PE, IgG2b-FITC,
IgG1-PE antibodies and rhEGF were obtained from
Immunotools (Friesoythe, Germany), and anti-Syndecan-1
(clone B-A38) was from Biorad (Hercules, CA, USA).
Anti-human-Notch-2-PE & APC, Syndecan-1 (CD138)-
PE antibodies were from eBioscience, Inc. (San Diego, CA,
USA) and HRP-conjugated secondary antibodies were
from KPL (Gaitherburg, MD, USA). Gamma-secretase
inhibitor (GSI) was from Calbiochem (Darmstadt,
Germany). Media, fetal calf serum (FCS) and tissue
culture supplies were from Lonza (Basel, Switzerland).
Unless otherwise stated, all chemicals were from Sigma
(St. Louis, MO, USA).

Cell culture

The human IBC cell line SUM-149 (a kind gift from Dr.
Bonnie Sloane, Wayne State University, Detroit, MI,
USA) and the non-IBC cell line SKBR3 (ATCC/LGC
Promochem, Wesel, Germany) were maintained in
HAM’s-F12 and DMEM containing 10% FCS, 1% glu-
tamine and 1% penicillin/streptomycin in a humidified
atmosphere of 5% CO, at 37 °C, respectively.

Patient’s samples

We enrolled 30 triple negative breast cancer patients
from the breast clinic of Ain Shams university hospitals
(IBC n =13, non-IBC n = 17). Carcinoma tissues were di-
vided into two parts: one part was fixed in 10% neutral
formalin buffered for immunohistochemical staining and
the other part was frozen in -80 °C for subsequent isola-
tion of total RNA.

Immunohistochemical staining of CD44 and Syndecan-1

Immunohistochemical staining was performed on
serial formalin-fixed and paraffin- embedded tissues
sectioned at 4 pm-thickness as we previously
described [40]. Tissue sections were deparaffinized by
two consecutive incubations in xylene for 10 min
each, followed by rehydration through two changes of
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absolute ethanol, graded decreasing concentrations of
ethanol for 5 min each and finally in distilled water.
For antigen retrieval, slides were incubated in citrate
buffer (pH = 6.0) in a water steamer for 30 min. Slides
were left to cool at room temperature for 20 min
then washed 3 x 5 min with PBS. Endogenous perox-
idase activity of the tissue was blocked with 3%
hydrogen peroxide for 5 min (Dual Endogenous En-
zyme block, Dako K4065, Glostrup, Denmark) and
slides were washed with PBS 3 x 5 min. Tissue sec-
tions were blocked in 1% BSA/PBS and incubated
overnight at 4 °C in a humidified chamber with the
primary anti-CD44 (dilution 1:800) and anti-
Syndecan-1 antibodies (dilution 1:100). Afterwards,
slides were washed 3 x 5 min and incubated with
HRP-Rabbit/Mouse (DAKO EnVision + Dual Link
System-HRP (DAB+) for 30 min at room temperature.
Then, nuclei were counterstained with hematoxylin,
sections were mounted with Permount® and imaged.
Negative control slides were run in parallel where
primary antibodies were omitted.

siRNA-mediated knockdown of Syndecan-1 expression
siRNA knockdown was performed using a negative con-
trol siRNA (negative control #1, Ambion, Cambridgeshire,
UK) and siRNA #12634 (Ambion) to target Syndecan-1
coding region. Cancer cell lines were transfected with 20
nM siRNA using Dharmafect reagent (Dharmacon,
Lafayette, CO, USA) according to the manufacturer’s
instructions. Successful knockdown was confirmed by
flow cytometry as previously described [16, 22].

Flow cytometry

To detect cell surface breast CSC markers, control and
Syndecan-1 siRNA transfected cells were incubated with
10 pl of anti-CD44-FITC, anti-CD24-PE and the FITC
and PE isotype control antibodies for 30 min at room
temperature in the dark. Analogously, cells were
analyzed for Syndecan-1 (CD138)-PE in combination
with Notch-2-PE or-APC antibodies. Stained cells were
analyzed by a cube-8 flow cytometer (Sysmex/Partec,
Muenster, Germany). For ALDH1 activity assessment,
1x 10° control and Syndecan-1 siRNA transfected cells
were resuspended in assay buffer containing ALDH1
substrate (1 pmol/L). Half of this suspension was incu-
bated with 50 mM ALDHI inhibitor diethylaminoben-
zaldehyde (DEAB) as negative control. Afterwards, the
cells were incubated for 1 h at 37 °C in water bath in
dark with agitation at 10 min interval. Finally, the cells
were centrifuged at 400 xg for 5 min and were resus-
pended in 1 mL assay buffer and stored on ice prior to
acquisition by flow cytometry.
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Quantitative real-time PCR

Total RNA isolated from cultured cells or frozen tissues
using GeneJET RNA Purification Kit (Thermoscientific,
Waltham, USA) was reverse transcribed into c¢cDNA
using the high capacity cDNA Kit (Applied Biosystems,
Foster City, CA, USA). Quantitative real-time PCR was
conducted in duplicate for each gene of interest using
SYBR Green dye and gene expression levels were mea-
sured in a steponeplus detection System (Applied Bio-
systems). Relative gene expression was evaluated using
the 2"2Ct method after normalization to 18S rRNA or
GAPDH as previously described [22]. Melting curve
analysis was performed to confirm specific product amp-
lification. Primers were designed using Primer 3.0 soft-
ware or referred to the published literature. Primer
sequences are listed in Additional file 1: Table S1. For
Notch pharmacological inhibition experiments, 1 pM
GSI was added for control and Syndecan-1 siRNA trans-
fected SUM-149 cells 24 h before RNA extraction. Data
for mRNA expression levels in carcinoma tissues of IBC
vs non-IBC (normalized to values of normal tissues col-
lected during reduction mammoplasty) was represented
as log2-transformed fold change.

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis
(SDS-PAGE) and immunoblotting

Briefly, 72 h post transfection, control and Syndecan-1
siRNA transfected cells were washed twice with PBS and
lysed in RIPA buffer containing protease and phosphat-
ase inhibitors [22]. The cell lysates were shaked for
20 min followed by centrifugation at 10,000 xg for
10 min at 4 °C. Supernatant was collected and protein
concentration was determined using Bradford assay
(Fermentas, Burlington, ON, Canada). 25-50 pg of
protein per lane was separated on 10-12% gels and elec-
trotransferred into polyvinylidene fluoride (PVDF) mem-
brane (Millipore, USA). Immunoblotting was performed
using primary antibodies against phospho-NF«B/
p65°279)  bhospho-STAT3Y7%,  phospho-Akt®e7?),
Akt, gp130, Notch-1, EGFR and HRP-conjugated sec-
ondary antibodies. After washing, specifically bound
antibodies were visualized by ECL reaction. Visualized
bands were analyzed with Image] software (National In-
stitutes of Health, Bethesda, MA, USA) using B-actin or
tubulin as loading controls.

Three dimensional (3D) spheroids and colony formation
assays

Petri-dishes were coated with 150 pl Cultrex’Basement
Membrane Extract (BME) (Trevigen, Inc, MD, USA)
and incubated at 37 °C in a CO, incubator for 15 min to
solidify. Control and Syndecan-1 siRNA transfected
SUM-149 and SKBR3 cells were mixed with 2% BME at
density of 5x 10* before overlaying onto each coated
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petridish and incubated for 7-10 days at 37 °C to allow
spheroid formation in 3D. The media were changed
every 3—4 days, the spheroids were stained with cell
tracker red dye, and the number of spheroids (>50 pm)
was counted. To examine the effect of Syndecan-1 silen-
cing on clonogenic ability, 10,000 control and Syndecan-
1 knockdown SUM-149 cells were seeded in six-well
plates and maintained in Ham-F12 with 10% FBS for
10-14 days as previously performed [41]. Cells were
washed with PBS, fixed in methanol for 20 min and
stained with 0.05% crystal violet for 15 min. Excess stain
was removed by water and the stain was dissolved in
1 ml 10% glacial acetic acid. The released color was
measured by spectrophotometry at 595 nm according to
[42]. Colony formation steps were also performed in
presence of 10 ng/mL EGF and 1% FBS (with addition of
fresh media at interval 3—4 days) or 1 uM GSI for 24 h
followed by exchange with complete growth media.

Secretome profiling of conditioned media of SUM-149
cells grown in 3D spheroids

Cytokines, chemokines and growth factors secreted by
control and Syndecan-1-silenced SUM-149 cells grown in
3D were detected in conditioned media (CM) using Ray-
Bio cytokine array-C3 (RayBiotech, Inc. GA, USA). All
steps needed to form 3D spheroids were analogously per-
formed followed by starvation for 24 h. Media conditioned
by the secretome of the cells were collected and subjected
to profile 42 biological factors according to the manufac-
turer’s instructions. The signal intensity of each spot,
which represents the secreted chemokine, cytokines, and
growth factors was evaluated by subtracting from the
background and normalized to positive controls using
Image] software as we previously described [40].

Statistical analysis

All Data are presented as mean + SEM or SD as indi-
cated. Differences among variables were evaluated using
x>, or Fischer’s exact tests. Student’s t-test (for normally
distributed data) or Mann-Whitney U-test (for non-
normally distributed data) was used for two group com-
parisons. The statistical difference between more than
two groups was evaluated by one-way ANOVA followed
by Tukey’s multiple comparison test. The Pearson’s Rank
correlation test was used to analyze the correlations.
The level of significance was set at p < 0.05. Graphs were
plotted and analyses were performed by GraphPad Prism
7 software (San Diego, CA, USA) and IBM SPSS version
22 (Chicago, IL, USA).

Results

Clinical and pathological characteristics of patients

The clinical and pathological characteristics of patients
included in this study are represented in Table 1. There
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Table 1 Clinical and pathological data of IBC and non-IBC patients

Characteristic IBC (N=13) Non-IBC (N=17) P value
Age
Range 29-60 35-63 0.119°
Mean + SD 45.15+898 50.11 +£943
NA 0 0
Tumor size
<4 2 (16.7%) 2.(11.8%) 1.000°
>4 10 (83.3%) 15 (88.2%)
NA 1 0
Lymph node status
<4 1 (10%) 7 (41.2%) 0.098°
24 9 (90%) 10 (58.8%)
NA 3 0
Tumor grade
Gl 0 0 0332°
G2 7 (58.3%) 14 (82.4%)
G3 4 (33.3%) 3 (17.6%)
G4 1 (8.3%) 0
NA 1 0
Lymphovascular invasion
Negative 3 (27.3%) 13 (76.5%) 0018*°
Positive 8 (72.7%) 4 (23.5%)
NA 2 0

Data are expressed as mean + SD
NA Data not available
*significant P value calculated by ®Student’s t-test or PFisher’s exact test

were 13 IBC patients with an average age of 45.15 years
(range from 29 to 60 years) and 17 non-IBC patients
with an average age of 50 years (range from 35 to 63
years). In the IBC group 16.7% of the patients had a
tumor size <4 and 83.3% of the patients had a tumor
size >4, while in the non-IBC group 11.8% of the pa-
tients had a tumor size <4 and 88.2% of the patients had
a tumor size > 4. The histological tumor grade was diag-
nosed as: 58.3% grade 2 (G2), 33.3% grade 3 (G3) and
8.3% was Grade 4 (G4) in IBC and was diagnosed as:
82.4% grade 2 (G2) and 17.6% grade 3 (G3) in non-IBC.
The lymph nodes metastasis status was subdivided ac-
cording to the number of positive metastatic lymph
nodes into <4 and >4. All IBC patients who underwent
surgery were lymph nodes metastasis positive: 10% had
<4 positive lymph nodes and 90% had > 4 positive meta-
static lymph nodes. In non-IBC patients, 41.2% had <4
lymph nodes involvement and 58.8% had =4 positive
lymph nodes. Therefore, there is a trend toward women
with IBC showing increased incidence of=4 positive
metastatic lymph nodes compared with non-IBC women
(P =0.098). Pathological examination of IBC and non-
IBC tissue sections revealed that lymphovascular
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invasion is positive in 72.7% and 23.5% in IBC and non-
IBC, respectively. The presence of lymphovascular inva-
sion in carcinoma tissues of IBC was significantly higher
(P =0.018) than that in non-IBC.

Higher expression with a positive correlation of
Syndecan-1 with CD44 in carcinoma tissues of triple-
negative IBC vs non-IBC patients

Although Syndecan-1 expression is a prognostic
marker for different tumor entities including breast
cancer, and is a modulator of breast and prostate
CSCs [16, 43], its role in IBC pathogenesis is still un-
known. Therefore, we analyzed Syndecan-1 expression
by qPCR or immunohistochemical staining in carcin-
oma tissues of triple negative IBC vs non-IBC pa-
tients. Relative to non-IBC, our data indicate a
significantly higher expression of Syndecan-1 tran-
script levels (P<0.01) (Fig. la), and higher positive
staining of Syndecan-1 protein in tissues of IBC (P<
0.01) (Fig. 1b), and on carcinoma cells infiltrated into
lymphatic  vessels, a unique feature for IBC
(Additional file 2: Figure S1).

IBC is essentially characterized by chemo- and radio-
resistance, which may be attributed to the existence of
CSCs [13, 44]. Therefore, we next investigated expres-
sion of the CSC marker CD44 in triple negative IBC vs
non-IBC. Our data showed that tissues of triple negative
IBC exhibited a significantly higher CD44 staining than
those of non-IBC patients (P < 0.05) (Fig. 1b). This find-
ing suggests that IBC tissues may display higher CSC
properties than those of non-IBC patients. Interestingly,
a significant positive correlation was found between
expression of Syndecan-1 and CD44 in IBC (r=0.87,
P <0.001) and in non-IBC (r=0.54, P<0.05) (Fig. 1c),
suggesting a functional association and an essential
role in IBC patients.

We next investigated expression and distribution of
Syndecan-1 and the CSC marker CD44 in our experi-
mental models; the human triple negative IBC SUM-
149 cell line and the HER-2 overexpressing non-IBC
SKBR3 cell line. Our findings indicate that the
CD44Syndecan-1") subset represents approximately
62.12% and 1.07% in SUM-149 and SKBR3 cells, re-
spectively. The CD44*Syndecan-1") subset represents
32.31% and 2.01%, and the CD44"'Syndecan-1") sub-
set represents 0.98% and 26.57% in SUM-149 and
SKBR-3 cells, respectively (Fig. 1d&e ). This means
that the CD44'"-enriched Syndecan-1 subset consti-
tutes 98.5% and 3.9% of total Syndecan-1 expression
in SUM-149 and SKBR3 cells, respectively. This con-
forms to our findings in the clinical tissue specimens
and proves that Syndecan-1 is coexpressed and may
possess a functional link to the CSC marker CD44 in
triple negative IBC.
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(See figure on previous page.)

Fig. 1 Expression of Syndecan-1 and the CSC marker CD44 in carcinoma tissues of IBC vs non-IBC patients, SUM-149 and SKBR3 cells. a Higher
expression of Syndecan-1 mRNA level in carcinoma tissues of IBC (n = 13) vs non-IBC (n = 14). RQ values of mRNA expression are log2-transformed
and normalized to values of normal tissues collected during reduction mammoplasty. Bars represent median with interquartile range. ** P < 0.01

as determined by Mann-Whitney U-test. b Representative fields of immunostaining (brown color) of Syndecan-1 and CD44 in paraffin embedded
carcinoma tissue sections of triple negative IBC (n = 13) and non-IBC (n = 17) patients. A high density of cancer cells positive for CD44 and Syndecan-1
is observed in IBC vs non-IBC. ¢ Pearson’s correlation between Syndecan-1 and CD44 expression in carcinoma tissues of IBC vs non-IBC.
d A representative flow cytometric analysis for the expression of CD44 and Syndecan-1 in SUM-149 and SKBR3 cells. e Quantitative analysis of four
subpopulations; CD447Syndecan-1°, CD44Syndecan-1°, CD44”Syndecan-1" and CD44™Syndecan-1%. Syndecan-1 is higher expressed in the
CD44%-enriched subset in SUM-149 cells than that in SKBR3 cells. Data represent mean + SEM, n 2 3. ** P< 001, # P < 0.001 as determined by
Student’s t-test. Data shown are a single experiment representative of three independent experiments

Syndecan-1 silencing significantly reduces the
CD44™CD24™"°" pool and ALDH1 activity in SUM-149
and SKBR3 cells
We have previously shown that Syndecan-1 is a modula-
tor of breast cancer stemness in MDA-MB-231 and
MCE-7 cells [16]. To formally test if Syndecan-1 is also
of relevance for CSCs of SUM-149 and SKBR3 cells, we
analyzed the effect of Syndecan-1 knockdown on CSC
properties, namely the CD44”CD24"* subpopulation
and ALDHI1 activity. Successful downregulation of
Syndecan-1 in both cell lines was confirmed by flow cy-
tometry (Additional file 3: Figure S2). We next analyzed
the expression of CD44 and CD24 in control and
Syndecan-1-silenced SUM-149 cells by flow cytometry.
siRNA-mediated Syndecan-1 depletion significantly re-
duced the CD44'CD24"°") pool by 19.5% as com-
pared with control cells (with an average of 66.2% + 2.1%
in control cells and 53.1% + 1% in Syndecan-1 siRNA
transfected cells) (P <0.01, n=4) (Fig. 2a). Although the
CD44CD24") subset increased upon Syndecan-1 de-
pletion, it did not reach the significance level (Fig. 2a).
We further characterized the activity of ALDH isoform
1 (ALDH1), an additional surrogate marker for CSCs [14]
using Aldefluor assay. Flow cytometric analysis of ALDH1
activity uncovered that siRNA-mediated Syndecan-1 de-
pletion diminished the ALDH1-positive subpopulation by
22% in SUM-149 cells (with an average of 24.6% + 1.9% in
control cells and 17.3% + 1.1% in Syndecan-1siRNA cells,
P <0.05) (Fig. 2b) and by 42% in SKBR-3 cells (with an
average of 18.9% + 0.6% in control cells and 11.9% + 1.8%
in Syndecan-1 siRNA transfected cells, P < 0.01) (Fig. 2c)
compared with control cells. Taken together, these find-
ings further validate the key role played by Syndecan-1 in
regulating the stem cell phenotype in different molecular
subtypes of IBC and non-IBC cell lines.

Syndecan-1 knockdown perturbs the formation of
colonies and spheroids growing in 3D

Since colony and spheroids formation are unique prop-
erties for tumorigenesis and self-renewal of CSCs [16],
we evaluated the influence of Syndecan-1 on this process
in breast cancer cell lines in vitro. Single cell

suspensions of control and Syndecan-1 siRNA trans-
fected SUM-149 and SKBR3 cells in 2% cultrex were
overlaid on cultrex-coated Petri-dishes and cultured for
7-10 days. Our data indicate that Syndecan-1-silenced
cells displayed a significantly reduced capability to form
spheroids in 3D by 39% and 46% in SUM-149 and
SKBR3 cells compared to control cells, respectively (P <
0.01, n=3) (Fig. 3a). We next examined the potential
function of Syndecan-1 in regulating colony formation.
Syndecan-1 ablation suppressed the colony forming cap-
acity by 46% as compared to control SUM-149 cells (P <
0.01, n = 3) (Fig. 3b).

Syndecan-1 silencing downregulates a myriad of cancer
stem cell-related genes in SUM-149 and SKBR3 cells

CSCs are regulated by several distinct signaling path-
ways, including the Notch, IL-6/STAT3, and hedgehog
signaling pathways [28]. Therefore, we examined
whether the mRNA expression levels of components of
these pathways were influenced by Syndecan-1 deple-
tion. As depicted in Fig. 4a&b, our qPCR data indicate
that Syndecan-1 knockdown led to a significant down-
regulation of Notch-1, -3, -4 and the Notch signaling
downstream target Hey-1 transcript levels by 45%, 41%,
27% and 43% in SUM-149 cells, respectively. In contrast,
only a significantly reduction of Notch-3 transcript levels
by 19% was evident in SKBR3 cells as compared to con-
trol cells. The activation of the Hedgehog pathway is
mediated by the transcription factor Gli-1 [45]. Our data
uncovered Gli-1 that transcript levels were downregu-
lated by 31% in Syndecan-1 knockdown cells compared
to control SKBR3 cells. This conforms with the observa-
tion that CD138/Syndecan-1* multiple myeloma cells ex-
press Hedgehog genes and that inhibition of Smoothened
decreased multiple myeloma cell viability by downregulat-
ing Gli-1 and Patchedl [46]. The expression of stemness-
associated inflammatory cytokines namely; IL-6 and IL-8,
and gp130 mRNAs were downregulated by 39%, 38% and
34% in Syndecan-1-silenced SUM149 and by 55%, 61%
and 49% in SKBR3 upon Syndecan-1 knockdown, respect-
ively. A relevant clue for regulation of IL-6 is the chemo-
kine CCL20, which induces proliferation of cultured
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human breast epithelial cells [47] and is involved in IL-6
induction [48]. CCL20 mRNA was downregulated by 40%
and 51% in Syndecan-1 knockdown SUM-149 and SKBR3
compared to control cells, respectively, suggesting the ex-
istence of a Syndecan-1/CCL20/IL-6 axis.

Syndecan-1 siRNA knockdown reduces the secretome
profile of SUM-149 cells

We further analyzed the effect of Syndecan-1 silencing
on the secretome profile of SUM-149 cells. This cell line
is characterized by high secretion of IL-6 and IL-8 [41],
which could promote a CSC phenotype via an autocrine

feedback loop. Therefore, post starvation for 24 h,
serum-free culture media collected from control and
Syndecan-1-silenced SUM-149 cells were subjected to
cytokine profiling. Densitometric analysis assessed by
Image] software indicates an overall decrease in the se-
cretions of cytokines, chemokines and growth factors by
approximately 50-80% upon Syndecan-1 knockdown in
SUM-149 cells (Fig. 5). Strikingly, the predominant cyto-
kines, chemokines and growth factors secreted by SUM-
149 cells implicated in regulating a CSC phenotype were
downregulated; namely IL-6, IL-8 and growth regulated
protein GRO-alpha, and GRO a/b/g.
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Syndecan-1 silencing downregulates gp130 and models of inflammation and in MDA-MB-231 breast
attenuates the constitutive activity of STAT3 and NFkB in  cancer cells [16, 49, 50]. As IL-6 and its IL-6R/gp130 re-
SUM-149 and SKBR3 cells ceptor complex mediate breast CSC self-renewal via

We have previously shown that Syndecan-1 modulates STAT3 activation [27], we investigated whether
the expression of IL-6, IL-6R in different experimental = Syndecan-1 depletion might affect expression of gp130
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Fig. 4 Syndecan-1 silencing suppresses CSC-related gene expression in SUM-149 and SKBR3 cells. Post Syndecan-1 knockdown, total RNA isolated
from SUM-149 (a) and SKBR3 cells (b) was reverse transcribed into cDNA and subjected into gqPCR. Data represent mean + SEM, n = 3. * P < 0.05,
# P <001 as determined by Student’s t-test
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and the active status of STAT3 using Western blot
analysis. Relative to controls, gpl30 was significantly
downregulated at the protein level by 43% and 24%
in Syndecan-1 siRNA transfected SUM-149 and
SKBR3 cells, respectively (Fig. 6a&b). Interestingly,
Syndecan-1 depletion significantly attenuated the ac-
tive phosphorylated form of STAT3 by 46% and 39%
in SUM-149 and SKBR3 cells, compared to control
cells, respectively (Fig. 6a&b). The transcription factor
NF«B is a master regulator of a number of cytokines
(e.g. IL-6 and IL-8) involved in stemness regulation in
the triple negative breast cancer [51]. The level of the
phosphorylated form of NFkB was downregulated by
46% in SUM-149 (Fig. 6a&b). In contrast, the phos-
phorylated form of NFxkB was downregulated by only
12% in SKBR3 cells upon Syndecan-1 depletion

compared to controls, and it did not reach the signifi-
cance level (p =0.08) (Fig. 6a&b).

Notch-1 and -3 are positively correlated with Syndecan-1

mRNA expression in tissues of triple negative IBC vs non-
IBC

We next assessed expression of Notch-1 & -3 tran-
script levels in tissues of IBC vs non-IBC. qPCR
results revealed that Notch-1 was significantly upreg-
ulated in IBC in comparison with non-IBC (P <0.01),
whereas we couldn’t detect a significant difference for
expression of Notch-3 mRNA in IBC vs non-IBC
(Fig. 7a). Interestingly, a significant positive correl-
ation between Notch-1 and Syndecan-1 mRNA levels
(r=0.793, P=0.001) (Fig. 7b) and between Notch-3
and Syndecan-1 mRNA levels (r=0.819, P=0.001)
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(Fig. 7c¢) did exist in carcinoma tissues of IBC. This
correlation was not observed in non-IBC (Fig. 7b&c).

Syndecan-1 orchestrates colony formation and expression
of inflammatory cytokines via Notch signaling in SUM-149
cells

It has been shown that treatment of patient-derived
xenograft tumors with anti-Notch-2 antibodies inhibits
tumor growth and reduces the tumor-initiating cell
frequency [39], suggesting the role played by Notch-2 in
regulating CSC properties. Thus, we performed flow cy-
tometric analysis for the expression and distribution of
Notch-2 and Syndecan-1 in SUM-149 and SKBR3 cells.
Our findings indicate that the Notch-2”Syndecan-1*
subset represents approximately 40.7% and 28.5% in
SUM-149 and SKBR-3 cells, respectively. The Notch-
2Syndecan-1°) subset represents 28.1% and 63.1%, and
the Notch-2"'Syndecan-1") subset represents 10.95%
and 0.72% in SUM-149 and SKBR-3 cells, respectively
(Fig. 8a&b). This means that the Notch-2"-enriched
Syndecan-1 subset constitutes 78.8% and 97.5% of total
Syndecan-1 expression in SUM-149 and SKBR-3 cells,
respectively. These data along with our findings in clin-
ical samples highlights a functional link of Syndecan-1
expression to Notch signaling. Therefore, we tested

whether Syndecan-1 is implicated in regulation of Notch
expression. Our Western blot data indicate that
Syndecan-1 knockdown cells exhibited a significant re-
duction of Notch-1 full-length protein levels by 20%
compared to control cells (Fig. 8c). Furthermore, we
sought to evaluate the impact of Syndecan-1 silencing
on Notch-2 expression in SUM-149 cells. Our flow cyto-
metric analysis demonstrated a significant downregula-
tion of Notch-2 expression by 27% in Syndecan-1-
silenced SUM-149 relative to control cells (P < 0.05)
(Fig. 8c).

As we have shown that Syndecan-1 knockdown
reduced expression of IL-6 and IL-8, the predominant
cytokines implicated in IBC stemness regulation, we
evaluated whether this effect is Notch-dependent. There-
fore, control and Syndecan-1-silenced SUM-149 cells
were incubated with 1 puM GSI for 24 h. qPCR results
uncovered that Notch inhibition or Syndecan-1 silencing
significantly downregulated expression of IL-6, gp130,
IL-8 and Hey-1 by at least 40% as compared to control
cells (Fig. 8d). Of note, we did not observe any signifi-
cant additive effect for Notch inhibition in Syndecan-1-
silenced cells, suggesting that Syndecan-1 knockdown
and Notch exert their potent effect via the same down-
stream target. To further prove that Syndecan-1
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silencing has a functionally similar effect of Notch inhib-
ition, we tested the effect of 1 pM GSI on colony forma-
tion. Our data indicate that treatment with GSI
abrogated completely colony formation in control and
Syndecan-1 siRNA transfected SUM-149 cells (Data not
shown).

Syndecan-1 regulates EGFR expression via Notch signaling
and promotes EGF-induced colony formation in IBC

EGER plays an essential role in IBC progression [31] and
is correlated with Syndecan-1 expression in some tumor
entities [36, 52]. However, the correlation between
Syndecan-1 and EGFR in IBC is still unexplored.
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Therefore, we sought to evaluate expression of EGFR  demonstrate  EGFR mRNA was significantly higher
mRNA and establish a correlation with Syndecan-1  expressed in tissues of IBC in comparison to those of
mRNA in triple negative IBC vs non-IBC. Our qPCR data  non-IBC (P<0.05) (Fig. 9a). Interestingly, we found a
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significant positive correlation between Syndecan-1 and Since EGER is known to be in a crosstalk with Notch

EGFR mRNA expression in tissues of IBC (r=0.548,
P =0.05) (Fig. 9b), although this correlation was not ob-
served in tissue of non-IBC (r = -0.032, P = 0.913) (Fig. 9b).
These data prompted us to investigate the effect of
Syndecan-1 depletion on EGFR expression in SUM-149
and SKBR3 cells. Our findings indicate that Syndecan-1
knockdown significantly reduced the mRNA expression
level of EGFR by 29% in SUM-149 (P < 0.01) and by 77%
in SKBR3 cells (P < 0.001) (Fig. 9¢). Relative to control, we
validated downregulation of EGFR protein expression by
60% upon Syndecan-1 knockdown in SUM-149 cells as
determined by Western blot (Fig. 9c¢).

signaling in different tumor entities including triple
negative breast cancer [53, 54], we examined the effect
of GSI on expression of EGFR transcript levels in con-
trol and Syndecan-1-depleted SUM-149 cells. Our qPCR
data indicate a significant downregulation of EGFR
mRNA level by 47% (P<0.05) in control cells upon
Notch inhibitor treatment (Fig. 9d). Strikingly, treatment
of Syndecan-1-silenced cells with Notch inhibitor did
not further decrease EGFR expression, suggesting that
EGEFR expression is regulated by Syndecan-1 and Notch
signaling. This finding was also substantiated at the
functional level by treatment of control and
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Syndecan-1 knockdown SUM-149 cells with EGF to
test its effect on colony formation. Syndecan-1 silen-
cing significantly reduced colony formation in re-
sponse to EGF by 58% (P<0.01) relative to EGF-
treated control cells (Fig. 9e). Finally, we studied the
effect of Syndecan-1 knockdown on the cell survival
downstream target Akt of EGF/EGFR signaling in
SUM-149 cells. As depicted in Fig. 9f, our Western
blot data demonstrate Syndecan-1 silencing did not
only downregulate basal level of the active form of
Akt by 20% but also attenuated its activation status in
response to EGF by 22% and 10% after 10 and
20 min stimulation compared to control SUM-149
cells, respectively.

Discussion

As Syndecan-1 is an important modulator of inflamma-
tion and the CSC phenotype in different experimental
models and in cancer [19, 20], it emerges as a candidate
marker for IBC. The current study demonstrates for the
first time a higher transcript levels and immunohisto-
chemical staining of Syndecan-1 in clinical samples of
triple negative IBC vs non-IBC patients. This is consist-
ent with the prognostic value of Syndecan-1 in different
cancer entities, including breast cancer [55] and in line
with the negative correlation between the ER, PR and
the proportion of CD138-positive cells in ductal breast
carcinoma in situ [23]. Interestingly, a higher expression
of CD44 with a positive correlation with Syndecan-1 ex-
ists in tissues of IBC patients. Of note, Syndecan-1 ex-
pression is enriched in CD44" subpopulation in SUM-
149 cells, although this enrichment is less in SKBR3
cells. This is in agreement with the notion of interaction
between Syndecan-1 and CD44 promoting glioma cell
invasion [56] and suggesting a physical and functional
association as previously described [57, 58].

To extend our findings to in vitro models and to bet-
ter understand its functional role, we studied the impact
of Syndecan-1 silencing on CSC properties, namely
ALDH1 activity and the presence and size of the
CD44CD24°%) subpopulation, in SUM-149 cells.
Our data revealed that Syndecan-1 silencing diminished
the CD44CD24"°") and ALDHI-positive subsets
compared with controls. These results are consistent
with our previous data and other reports demonstrating
that Syndecan-1 acts as a regulator of CSCs in triple-
negative and ER-positive breast cancer [16, 29] and in
prostate cancer [43]. These findings were confirmed in
SKBR3 cells. ALDH1 positive cells were reduced upon
Syndecan-1 silencing in this cell line. Taken together,
these data provide evidence for a role of Syndecan-1 as a
regulator of a CSC phenotype in different molecular
subtypes of IBC and non-IBC cell lines.
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One of the characteristic features of CSCs is the ability
to form spheroids and colonies [16, 59]. Our in vitro
colony and 3D spheroids formation assays revealed
decreased numbers of spheroids formed in 3D and a re-
duction of colony numbers upon Syndecan-1 knock-
down in SUM-149 and SKBR3 cells. This finding is
supported by different reports: we have previously
shown reduced mammosphere formation and impaired
differentiation into cysts in Syndecan-1-depleted MCEF-7
cells [16]. Another study showed that early intervention
with a Syndecan-1 inhibitor (OGT2115) or RNAi-
mediated Syndecan-1 silencing in a transgenic mouse
model of prostate cancer reduced the incidence of
adenocarcinoma and the number of c-kit™”/CD44™ cells
in cancer foci [43].

It is well-known that breast CSCs are substantially reg-
ulated by a multitude of signaling pathways, including
the IL-6/STAT3, Notch and Hedgehog pathways, and
that targeting these pathways represents potential thera-
peutic approaches [28]. In this regard, we explored in
this study the role of Syndecan-1 in regulating expres-
sion of components of the Notch signaling pathway.
Interestingly, we found a higher expression of Notch-1
mRNA and a significant positive correlation between
Notch-1 & -3 and Syndecan-1 mRNA levels in carcin-
oma tissues of triple negative IBC vs non-IBC. Moreover,
Syndecan-1 is expressed in a Notch-2-enriched subset
with a prominent higher proportion in SUM-149 than
that in SKBR3 cells. Additionally, our findings revealed
that Syndecan-1 depletion led to downregulation of
Notch-1, -3 and -4, and the Notch signaling downstream
target Hey-1 at the mRNA levels, and of Notch-1 & -2
at the protein levels in SUM-149 cells. In contrast, only
the mRNA level of Notch-3 was reduced in SKBR3 cells
upon Syndecan-1 silencing. In support of our data, it
was reported that the neural stem cells expressing both
Syndecan-1 and Notch-1 have a higher capacity to form
neurospheres than singly positive cells [60]. Another
study demonstrated the presence of reciprocal regulation
between Notch-2 & -3 and Syndecan-2 in vascular
muscle cells with a physical interaction between
Syndecan-2 and Notch-3 [61]. Although Notch-2 has a
dual role as a tumor suppressor or oncogene in breast
cancer (reviewed in [62]), a recent study showed that
treatment of patient-derived xenografts of epithelial tu-
mors including breast with the Notch-2/Notch-3 antag-
onist tarextumab suppressed tumor growth and reduced
tumor-initiating cell frequency [39]. In light of this find-
ing, this is the first study reporting that Notch expres-
sion is influenced by Syndecan-1 in IBC.

IBC is known to secrete angiogenic and also vasculo-
genic growth factors, such as VEGF, bFGF, IL-6, and IL-
8 [63]. Coordinate expression and secretion of IL-6, IL-8
and GRO-a via NF«kB promote tumorgenesis and are
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associated with poor outcome in triple negative breast
cancer patients [51]. GRO chemokines are reported to
enhance breast cancer metastasis and resistance to
chemotherapy [64]. The maintenance of breast CSCs
and their chemoresistance particularly in the basal sub-
type/triple negative breast cancer is essentially attributed
to the synergistic effect between IL-6 [27, 65] and IL-8
[66, 67]. Moreover, IL-6 promotes breast cancer bone
metastasis through Notch-1 [68], and induces mammo-
sphere formation in breast cancer cells through Notch-3
[65]. These data thus integrate the IL-6/STAT3 and
Notch signaling pathways with relevance to our findings
in IBC. SUM-149 cells secrete detectable levels of IL-6
and IL-8, and their expression enhances mammosphere
formation and protects SUM-149 cells from radiation
upon treatment with the Notch inhibitor RO4929097
[41]. We suggest that this effect can be dampened by
Syndecan-1 downregulation. Indeed, treatment of SUM-
149 cells with Notch inhibitor reduced expression of IL-
6, IL-8 and gp130 mRNA levels to the same extent as
Syndecan-1 knockdown without any additive effect of
Notch inhibitor in Syndecan-1-depleted cells. Strikingly,
the same effect was also observed for the direct down-
stream Notch target gene Hey-1, suggesting that
Syndecan-1 and Notch signaling converge on the same
downstream target. However, a potential caveat is associ-
ated with the interpretation of the gamma-secretase in-
hibitor study: Pasqualon et al. [69] have recently shown
in a lung cancer model that the transmembrane frag-
ment generated by Syndecan-1 shedding undergoes
intramembrane proteolysis by gamma-secretase. If simi-
lar mechanisms apply to IBC cells, gamma-secretase in-
hibitor treatment may not only have directly affected the
Notch signaling pathway, but also signaling events trig-
gered by release of the cytoplasmic cleavage fragment of
Syndecan-1 [70]. Overall, our data suggest the exist-
ence of a signaling axis involving Syndecan-1, Notch,
IL-6/gp130 and IL-8 in IBC. Depletion of Syndecan-1
did not only downregulate expression of IL-6 and IL-
8 but also their secretion, thus inhibiting the positive
autocrine feedback loop.

There is mounting evidence that the expression of
inflammatory cytokines including IL-6 is regulated by
the transcription factors NFkB and STAT3 [71]. In
fact, the NFkB transcription factor pathway
contributes to the phenotype of IBC and its target
genes are elevated in ER- versus ER+ breast tumors
[72]. IL-6 is a direct regulator of breast CSC self-
renewal [65] and IL-6/JAK2/STAT3 pathway is more
active in CD44CD24"'°%) breast cancer cells com-
pared with other tumor cell types and its inhibition
blocks the growth of xenografts [27]. A constitutively
active STAT3 status is found in about 50-60% of
breast tumors specifically in IBC after neoadjuvant
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chemotherapy [73], which is associated with tumori-
genesis and drug resistance [74]. Moreover, STAT3
inhibition represses CSC traits in HER2-positive
breast cancers [74]. In this context and in agreement
with our prior observation in the triple negative
MDA-MB-23 1 cells [16], Syndecan-1 knockdown re-
duced the levels of the activated forms of NFkB and/
or STAT3 and downregulated expression of the IL-6/
LIF coreceptor gpl30 in SUM-149 and SKBR3 cells.
Our findings in SKBR3 cells are supported by the ob-
servation of an increased IL-6 expression upon HER-2
overexpression, which leads to enhanced breast CSC
activity and resistance against anti-HER2 treatment
via a STAT3/Akt/NFkB signaling-mediated autocrine-
positive feedback loop [75, 76]. Taken together, this
proves the efficacy of Syndecan-1 targeting in damp-
ening the inflammatory signaling mediated by NFxB
or STAT3 in the two cellular models of different
breast cancer subtypes.

An important cue for IBC pathogenesis and pro-
gression is EGFR [34]. Our data suggest presence of
cross-talk between EGFR and Syndecan-1 in IBC.
This is reflected by downregulation of EGFR mRNA
and protein levels in SUM-149 and the positive cor-
relation in the clinical samples of IBC. Interestingly,
we demonstrated that Notch inhibition did not fur-
ther downregulate expression of EGFR in Syndecan-1-
silenced cells, suggesting that Syndecan-1 regulates
expression of EGFR via Notch signaling. This is in
agreement with the notion of the crosstalk of EGFR
with Notch signaling in triple negative breast cancer
and their dual inhibition drastically attenuated active
Akt®e73 ) [53, 77]. Given the coreceptor function of
Syndecan-1 for growth factors [18] and downregula-
tion of EGFR expression upon Syndecan-1 silencing,
we found downregulation of the EGFR downstream
signaling cue pAkt®™*”® ) upon treatment with EGF
in Syndecan-1 knockdown cells compared to control
SUM-149 cells. At the functional level, Syndecan-1 si-
lencing reduced EGF-induced colony formation com-
pared to control SUM-149 cells. Taken together, our
results suggest that Syndecan-1 further regulates a
CSC phenotype via EGFR expression and implies a
role of interconnected Syndecan-1, Notch and EGFR
signaling in IBC.

Conclusions

In conclusion, this study identifies Syndecan-1 as a novel
molecular marker in IBC patients and future studies on
larger patient collectives will help to define the full prog-
nostic and predictive value of Syndecan-1 in IBC.
Additionally, our data provide evidence for the role
played by Syndecan-1 in synchronously fine tuning mul-
tiple signaling pathways including IL-6/STAT3/gp130,
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Fig. 10 Summary of the mode of action exerted by Syndecan-1 in IBC progression. Syndecan-1 modulates expression and activation of the components of
multiple signaling pathways including Notch, EGF/EGFR, and IL-6/STAT3/gp130. These changes have an impact on several features of the breast CSC
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inflammatory cytokines, Notch, and EGFR, implicated in
breast cancer stemness (Fig. 10). Therefore, this study
underscores the translational relevance of Syndecan-1
targeting to dampen multiple and intersected signaling
pathways-induced CSC phenotype in triple negative IBC
patients.
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