

What goes on the ground ends in our water

6th October campus

26 July Mehwar Road intersection with Wahat Road, 6th October City. Egypt.

Tel. : 3837-1517 Tel. : 3837-1518 Fax : (+202) 3837 1543 Hotline : 16672 Faculty of pharmacy Microbiology department

Water Pollution

IV. Legislative approaches

Apply strict fines on polluters.

This is known as the "polluter-pays" principle. This policy provides water pollution prevention expenses from people or organizations that have caused it in the first place. This policy is meant to try helping alter people's behavior and make them understand how their actions affect the environment.

Under the supervision of

Prof.dr. Faten Bayoumi

Head of Microbiology and Immunology department

> TA. Hams Atef TA. Zainab Kamel AL. Dina Osama

&

TA. Yousra Abd-Elsalam

Public health course students

Spring 2017

32

all show hind prior to be

Poursparing

Public health course students names "Spring 2017"

Amira Sayed Shedeed	Hebatallah Ashraf	Menna-t-allah Abubakr
Nada Abbas	Nouran Emam	Sohila Mahmoud
Maha Mahmoud	Ahmed AbdAllah	Aya Sayed
Mahmoud El dssouky	Nora Abd altef	Asmaa Ramdan
Nada Salah	Alaa Osama	Salma Mohamed
Arwa Ashraf	Amira Kasban	Alyaa Ibrahim
Maysoon Mostafa	Aslm Ashraf	Ahmed Mohamed
Abdallah Hesham	Tarek Ahmed	Ahmed Abdel Hakim
Nassra Mohamed	Rana Khaled	Hend Tarik
Heba Abubakr	Marco Hany	Mahmoud Morad
Mayada Mohamed	Nada Mohamed	Ramy Amr
Shireen fawzy	Mahmoud Mostafa	Alyaa Mahmoud
Salma Ayman	Michael Gerges	Khaled Badawy
Aziza Abdelnaser	Nora Essam	Elshymaa Tarek
Ahmed Mohamed Zaki	Ahmed hany	Emad hakeem
Halymah Sadiya Ibra- him	Ahmed Mohamed Nabil	Reem ahmed
Yara Elhosiny	Haydi Diaa Eldeen	Asmaa Hassan ali
Mohamed El-Zomor	Rania mohamed	Aslam Ashraf Abbas
Adel Mohamed Saleh	Marwan Mostafa	Ahmed Mohamed
Peter Nazeeh	Omar Ahmed	Shimaa Abdelrhman
Nourhan Ramdan	Howieda Fawzy	Sherif Ali

B. Groundwater safety measures

- 1. Securily burial of the waste in some specific deserts, they might leak and threaten the groundwater
- 2. The imposition of precautions on a large scale in order to maintain the integrity of groundwater as a source of security of drinking water sources and especially in Valley and Delta.
- 3. Reduction of air pollution, which contributes to pollution of rainwater

III. Administrative approaches

- 1. In specific places citizens committed to installing filters on high-precision on water tapes to drink.
- 2. State imposes a financial penalty on large ships and factories, which dispose waste in the Nile (support treatment and removal of the damage).
- 3. Raising awareness of the population to preserve water clean.

B. Aquatic plants (reed, papyrus, and hyacinth):

They are very useful in getting rid of a lot of water pollutants. They can get rid of 73% of lead and 83% of cadmium present. They grow in lakes ,they can absorb(iron ,copper ,chromium, zinc, lead and cadmium) and concentrate them in the roots of plants

II. Preventive approaches

A. Wastewater treatment:

- 1. wastewater treatment following the rules and criteria to maintain the quality of drinking water and limit the growth of aquatic plants which affect the validity of water used in irrigation .
- 2. prevent any contamination in lake Nasser which may accelerate aging of lake.
- 3. sanitary drainage stations should be established in places deprived of services as the ground water contamination is mostly due to unsafe disposal of wastes
- Attention to wastewater treatment, including possible re- use for irrigation in the fish farms and lakes in order to increase water resources and the protection of water sources from pollution

Nile River

Nile is the main source of water in Egypt which comprises about 97% of Egypt renewable water supplies. The Nile water agreement with Sudan specifies 55.5 BCM/year to Egypt.

Lacks

- Lake Nasser is the main Egyptian lake; it is created by the High Aswan Dam.
- Lake Qarun in the Fayoum depression is completely fed by water drainage.
- Wadi Al Rayan lakes are also fed by excess drainage water that was transferred there since 1973, giving 2 interconnected lakes.
- There are a few lagoons on the coast which are Bardaweel, Burullus lakes, Edku, Manzalah and Mariot.

Sources for drinking water and water

used in agriculture in Egypt (cont.)

Ground water

It's is the only source of water for people living in the desert areas which present in aquifers. Its total volume is about 40,000 BCM.

The major systems in Egypt are:

- Nile aquifer: recharged by infiltration of water irrigation initially from the Nile stream. It provides about 85% of the total groundwater abstractions in Egypt.
- Moghra: towards the Qattara Depression, it is recharged by lateral inflow from the Nile and rainfall.
- Nubian sandstone: fossil groundwater in the south west portion of Egypt imparted to Sudan, Chad and Libya.
- Fissured carbonate: generally spread over the greater part of the nation's range, on top of the Nubian aquifer.

Approaches of Solutions of water pollution in Egypt

1. biological methods of water treatment

A-Silver carp fish

Silver carb fish is a type of fish used to purify Nile water. Each kilogram of fish consumes around 80 kilograms of contaminated algae

Household water treatment

- Filtration system: to remove water impurities by physical, chemical and biological process.
- Distillation system: water boiled and the steam is collected in separated container.
- Disinfection: by applying heat or adding chlorine, chlorine dioxide or ozone.
- Water softener: device used to replace hard ions with sodium and potassium ions.

The major systems in Egypt (Cont.)

- Hardrock aquifer: generally in southern Sinai and eastern deserts.
- Coastal aquifer: on western and northern coasts and recharged by rainfall.

Rainwater

The northern coast receives winter rainfalls with a mean level of 150 mm/year and reduces to 100 mm/year to the east in El-Arish region then increases again to 250 mm/year at Rafah and northeast Sinai. Due to high temporal and spatial variability in the amount of rain water, it cannot be considered as reliable water source. Rainwater is collected in reservoirs however its amount is just sufficient for pastoral purposes and to some extent for seasonal agriculture.

Seawater Desalination

It has low priority in Egypt due to the high treatment cost. Desalination is performed in the Red Sea coastal area to supply water to tourism resorts and villages because the economic value is sufficiently high to cover treatment cost.

Treated Sewage

Its estimated total quantity in Egypt is about 0.3 BCM in 2013. It is reused for irrigation with or without blending with fresh water.

Strategies of water treatment

There are several methods and technologies for control and prevention of water pollution that present in sewage treatment, prevent pollution of rivers, wastes treatment and treatment of drainage water. As the treatment can be carried out by certain process

- Flocculation: chemicals are added to the polluted water leading to forming a floc.
- Sedimentation: the Floc will settle down in the bottom of water supply.
- Filtration: after process of sedimentation clear water that present on the surface will allowed to be filtered for the removal of contaminants.
- Disinfection: chlorine will be added to kill any micro-organism that present in water.

Water Treatment Process

Economic benefits of water pollution prevention

- 1. Improving health with avoiding illness
- 2. Reducing patient expenses with avoiding illness
- 3. Decrease number of deaths
- 4. Saving time with reducing time lost because of treatment
- 5. Increasing productive days due to avoid illness
- 6. Value of days of school attendance gained with avoiding illness
- 7. Value of child days gained with avoiding illness

Source of Water Pollution in Egypt

1-Industrial Pollution:

Surface and groundwater of Egypt undergoes deterioration because of the disposal of the heavily polluted domestic and industrial effluents into its waterways. The River Nile supplies 65% of the industrial water needs and receives more than 57% of its effluents.

2-Tourism as a source of marine pollution

Spilling of oil and contaminants even in small portions leads to marine pollution. Also garbage and dead animals that are thrown from ships causes water pollution.

3- Domestic Pollution:

Water quality is affected by the domestic pollution depending on the disposal way of the pollutant. Drinking water supply is connected to about 65% of Egypt's population is and only 24% to the sewage services which is growing fast due to constructions. Those who are not connected to sewage services get rid of wastes through latrines and septic tanks. Discharging and collecting the waste water in permeable septic tanks lead to spreading of the domestic wastewater into the soil and groundwater. The main source of the groundwater pollution is the domestic wastewater. It has serious effects on the public health since it contains toxic and injurious chemical constituents.

Cost –benefit analysis of water pollution prevention comparing to cost of diseases treatment and loss of work (cont.)

One of the pioneer studies in cost-benefit analysis for control of chemical pollution was conducted in japan. It was compared in the three main diseases in Japan as shown in table.

			Pollutio	on damag	e costs
Pollution disease	Main pollu- tant	Pollu- tion con- trol costs	Health dam- age	Liveli- hood damage	Environ- mental remedi- ation
Yok- kaichi asthma	SO2 , air pollu- tion	14,80 0	21,00 0	Not es- timated	Not esti- mated
Minama- ta dis- ease	Mer- cury, water Pollu- tion	125	7,670	4.270	690
Itai-Itai disease	Cad- mium, water and soil pollu- tion	600	740	880	890

This study shows that the costs of the pollution are very high comparing to costs need for prevention of that pollution either water or air pollution Cost –benefit analysis of water pollution prevention comparing to cost of diseases treatment and loss of work (cont.)

Waterborne diseases can have an important impact on the economy of the country, internationally as well as locally. infected person usually suffer from financial lose that caused by e.g. costs of medication ,costs of special food and costs of hospitalization in emergency cases. On average, most families spend on the infected person about 10% of the monthly household's income. The cost of control of pollution and its avoidance is much lower than damage costs. In 1995, India lost 366 billion Rs which are approximately 3.95% of GDP (growth domestic product) due to water pollution. But if India made any activities to provide better sanitation this would account between 1.73 to 2.2% of GDP.

4- Agricultural Pollution

In agriculture, the usage of the pesticides and fertilizers leads to water pollution problems. Local surfaces and groundwater in the agricultural areas contaminated due to nitrates that leach from fertilizers and bacteria from livestock and feed wastes.

5-Runoff:

Runoff which is originated from storms is not clear water since it contains a tremendous amount of wastes. Moreover, it considers a one amongst the most serious resources of contamination contrasted and municipal pollution. Runoff can prompt numerous issues, for example, direct contamination and over-loading which is originated from sewage treatment offices. These issues referred to hydraulic over-loading and different sorts of contamination that accompany overflow

Cost-benefit analysis of water pollution prevention comparing to cost of diseases treatment and loss of work

Diseases associated with water pollution (poor water and sanitation) in our developing world still have significant public health problem. Pathogenic microorganisms are present in large numbers in untreated sewage like schistosomial ova cercaria, hepatitis A and bacterial dysentery as well as infectious diarrhea. Moreover the most common para-cholera and typhoid. The incidence rates of typhoid annually in Egypt showed to have an average of 13/100,000 persons. According to WHO, another study was conducted in India indicates that the lack of water hygiene and sanitation results in annually loss of 0.4 million lives in India. 1.5 million Children under 5 years annually are lost and the country loses around 366 billion each year.

Most common Microorganisms contaminate water used for agriculture and can infect plants

Fungi		
Causative agent	Diseases	
Phytophthora infestans	Potato blight	
Colletotrichum graminicola	Anthracnose Stalk Rot	
Diplodia maydis	Diplodia Stalk Rot	
Puccinia sorghi	Common Rust of Corn	
Bac	teria	
Causative agent	Diseases	
Pectobacterium caroto-	Basal rot	
vorum		
Pseudomonas syringae	Bacterial speck on tomato	
Rhizobium radiobacter,	Crown Gall	
Vi	rus	
Causative agent	Diseases	
Topocuvirus	curling of the leaves and	
	leaf distortion	
Curtovirus	curly top disease	
Nematodes & Oomycetes (Water Molds)		
Causative agent	Diseases	
Meloidogyne	Root knot nematode	
Peronospora farinosa	Downy mildew	
Phytophthora infestans	late blight	

Microorganisms contaminating

water

A. Microorganisms contaminating drinking water that can infect humans

There are over 500 waterborne pathogens of potential concern in drinking waters, identified by the US Environmental Protection Agency (EPA)

Drinking Water contaminated by pathogens causing diarrheal disease, which is the most important sign of drinking water quality. The problem starts with consequence of contamination of water by human or animal fecal matter containing pathogenic organisms.

Coliform bacteria are used as indicators for harmful bacteria that exist naturally in the environment, while *Enterococci* is used as Fecal indicator for human or animal wastes in water. Contaminated water with human or animal wastes will be detected with presence of *E. coli* and fecal coliform.

Microorganisms that may cause waterborne diseases are:

• Protozoa

•Bacteria

• Intestinal parasites

.Viruses

Bacterial Infections

Vibrio cholera

It is small and curved-shaped Gram-negative rods. It has a single polar flagellum, and is considered as facultative anaerobes, which is capable of fermentative and respiratory metabolism. Cells of V. cholera have pili (fimbriae), and structure mainly composed of protein TcpA which is co-regulated with cholera toxin expression

Vibrio cholera causes <u>Cholera disease</u> which characterized by an acute and very intense diarrhea that can exceed one liter per hour, feel thirsty, muscular pains, general weakness, and oliguria, hypovolemia, hemoconcentration, followed by anuria

Microorganism found in water that infect plants (cont.)

Viruses	Locations	Plant Affected
Pelargonium flower break	Ebb and flower system	Pelargonium
Tomato Bushy Stunt	Lake, River	Chenopodium
Carnation mottle	Lake, River	Chenopodium
Tobacco mosa- ic	Lake, River	Chenopodium
Tomato mosaic	Hydroponic System	Lycopersicon, Capsicum
Cucumber green mosaic	Rock wool / continuous re- cycling nutri- ents	Cucmis
Tobacco necro- sis	Rock wool / continuous re- cycling nutri- ents	phaseolus

Microorganism found in water that infect plants (cont.)

Genera	Locations	Plants affected	
Alternaria	Effluent, pond Fruit, vegetab		
Ascochyta	Pond Fruit, vegtabl		
Aspergillus	Effluent, pond	fruit,vegetable	
Botrytis	Effluent, well,	NS*	
	stream, pond.		
Cephalosporium	Effluent,pond	Vegetable	
Chaetomium	Effluent.	NS	
Cladosporium	Effluent,pond	Fruit,vegetable	
Colletotrichum	hydroponics	Vegetables	
Coniothyrium	Effluent	NS	
Curvularia	Effluent.	NS	
Diplodia.	Pond	Fruit, vegtable	
Geotrichum	Pond	Fruit	
Gliocladium	Effluent	NS	
Microsporium	Well, stream,	NS	
	pond		
Mucor	Effluent, pond Fruit		
Penicillium	Effluent, pond Fruit		
Phoma	Well, stream,	Fruit, vegetable	
	pond		
Plasmodiophora	ra Pond sediment Vegetable		
Rhizoctonia	Effluent, well,	Vegetable	
	stream, pond		
Rhizopus	Pond	Vegetable	
Sclerotium	Pond Vegetable		
Sclerotium	Pond Vegetable		
Scopulariopsis	Effluent	NS	
Stemphyllium	Effluent NS		
Trichoderma	Effluent, pond Fruit		
Verticillium	Well, stream,	Potato, vegetable	
	pond, runoff,		
	nutrient film		

Viral Infection

Waterborne transmission Viruses are at most those that can infect GIT and are excreted in infected humans faeces

Disease	Specific Agent	Reservoir	Symptoms of Brief
Viral Gas-	Rotaviruses,	Human, feces,	Nausea,
troenteritis	Norwalk	or sewage wa-	vomiting,
	agent, etc	ter.	diarrhea,
			abdominal
			pain, low
			fever
Infectious	Hepatitis A	Feces from in-	Fever, nau-
Hepatitis		fected persons	sea, loss of
		contaminating	appetite;
		water	possibly
			vomiting,
			fatigue,
			headache,
			jaundice

Protozoan pathogens

Water plays an major role in the transmission of these pathogens such as Giardia lamblia, Entamoeba histolyt-

Disease	Specific Agent	Reservoir	Symptoms of Brief	
Amebiasis	Entamoeba	Bowel dis-	Diarrhea or	
(Amebic	histolytica	charges of car-	constipa-	
dysentery)		rier, and in-	tion, or nei-	
		fected person;	ther; loss of	
		possibly also	appetite,	
		rats	abdominal	
			discomfort;	
			blood, mu-	
			cus in stool	
Cryptospor-	Cryptospor-	Farm animals,	Mild flulike	
idiosis	idium	human, fowl,	symptoms,	
		cats, dogs,	diarrhea,	
		mice	vomiting,	
			nausea,	
			stomach	
			pain	
Giardiasis	Giardia	Bowel dis-	Prolonged	
	lamblia	charges of car-	diarrhea,	
		rier and infect-	abdominal	
		ed persons;	cramps, se-	
		dog, beaver	vere weight	ľ
			loss, fatigue,	h
			nausea, gas,	
			fever is unu-	
			sual	

Virus

Cucumber Green Mottle Mosaic Virus

It infects cucurbit crops as watermelon, cantaloupe and cucumber. The infected plant will drop the fruit and the remaining will be stunted, and easily transmitted through plants in a variety of ways (Table).

The symptoms of most infected plant include chlorosis, leaf spots, stunted and abnormal growth. The identification of the virus requires special laboratory test

Microorganism found in water that infect plants

Genus and species	Locations	Plants
Corynebacterium flaccumfaciens	NS	Bean
Erwinia carotovora pv. atroseptica	River , stream , ponds	Potato
Xanthomonas cam- pestris pv. begonia	Ebb and flow sys- tem	Ornamental
X. phaseoli	Pond	Bean

Fungi

The fungi reproduce both sexually and asexually via the production of spores. Spores may be spread long distances by water, or they may be soil borne. Many soil inhabiting fungi are capable of living saprotrophically, carrying out the part of their life cycle in the soil. These are known as facultative saprotrophs.

Bacteria

Some plant diseases are caused by rod-shaped bacteria. The bacteria enter the plant through natural openings as the stomata of the leaves or through wounds in the plant tissue. Once inside, the bacteria plug up the plant's vessels that carry water and nutrients and cause the plant to wilt. Common symptoms of bacterial disease are rotting and swollen plant tissues. Bacteria can be spread by water, insects, infected soil, and contaminated tools. Bacterial wilt attacks many vegetables including corn, tomatoes, and flowers.

.a. Cryptosporidium

It is intracellular, obligate, and coccidian parasite with complex life cycle and it causes cryptosporidiosis. Sources of infection are consumption of water contaminated with animal or human feces contaminated food and direct contact with the infected animals. Its symptoms including diarrhea, nausea, fever and vomiting

Most common Microorganisms contaminating drinking water and can infect humans

Bacteria		
Causative agent	Disease	
Salmonella typhi	Typhoid Fever	
Vibrio cholerae	Cholera	
Campylobacter Jejuni	Campylobacter Enter-	
	itis	
Escherichia coli	Enteropathogenic Di-	
	arrhea	
Shigella	Shigellosis (Bacillary	
	dysentery)	
Prot	ozoa	
Causative agent	Disease	
Entamoeba histolytica	Amebiasis	
Cryptosporidium	Cryptosporidiosis	
Giardia lamblia	Giardiasis	
Viruses		
Causative agent	Disease	
Rotaviruses	Viral Gastroenteritis	
Hepatitis A virus Infectious Hepatitis		
Helminthes		
Causative agent	Disease	
Schistosoma	Schistosomiasis	

B. Microorganisms contaminating water used for agriculture that can infect plants

Infectious plant diseases are caused by pathogens, which contaminate water that is used for agriculture leading to infect a plant and deprive it from nutrients and water. In some cases lead to death of plant.

Irrigation also affects the plants as it offers direct spread of the microbes as water borne moulds, plasmodial pathogens and oomycetes that come from populations in the water supply. These plant diseases causing microbes that are present in irrigation source cause hazards and outbreaks such clubroot from plasmodiophora brassicae. so, it is essential and critical to evaluate and control the agriculture water to avoid any diseases to the plants, an-

imals, and humans.

Microorganisms that cause plant diseases:

- . Bacteria
- . Fungi
- . Viruses
- Nematodes &
- Oomycetes (Water Molds)

