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In this paper, generalized Euler method (GEM) and homotopy analysis method (HAM) are
performed to solve the problem of the population dynamics of the human immunodefi-
ciency type 1 virus (HIV-1). We introduce fractional orders to the model of HIV-1 whose
components are plasma densities of uninfected CD4+ T-cells, the infected such cells and
the free virus. The effect of the drug treatment of HIV-1 will be discussed in this paper.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Mathematical models have become important tools in analyzing the spread and control of infectious diseases. Under-
standing the transmission characteristics of infectious diseases in communities, regions, and countries can lead to better ap-
proaches to decreasing the transmission of these diseases [1]. There has been much interest recently in mathematical models
of viral population dynamics in host cells with most attention focused on HIV [2–4]. Different methods were investigated to
get approximate analytic solution or numerical solutions for the different models of the dynamics of HIV disease [5–7]. In [8],
the variational iteration method and modified variational iteration method were applied to obtain approximate solution of
HIV infection model. We will consider some models for HIV-1 population dynamics below but first analyze a simplified mod-
el introduced by Bonhoeffer et al. in [9]. Here there are two components: x, the number of uninfected CD4+ T-cells and y, the
number of infected such cells. Then the following two equations describe the evolution of the system:
dx
dt
¼ s� lx� bxy;

dy
dt
¼ bxy� my;
where all parameters and variables are non-negative. Again s is the assumed constant rate of production of CD4+ T-cells, l is
their per capita death rate, bxy is the rate of infection of CD4+ T-cells by virus, and my is the rate of disappearance of infected
cells. The viral variable has been omitted for simplicity as it is here assumed to be linearly related to y. A more complete
model of human immunodeficiency virus type 1 (HIV-1) dynamics considers in addition to the uninfected and infected
. All rights reserved.
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CD4+ T-cells, x and y, respectively, the number of virions in plasma, z. The following three equations are a slightly modified
version of those in [2]:
dx
dt
¼ s� lx� bxz;

dy
dt
¼ bxz� my;

dz
dt
¼ cy� cz� bxz:
A modified model was presented in [2] as follows:
dx
dt
¼ s� lx� bxz;

dy
dt
¼ bxz� ey;

dz
dt
¼ cy� cz;
with initial conditions
xð0Þ ¼ M1; yð0Þ ¼ M2; zð0Þ ¼ M3;
where s is the (assumed constant) rate of production of CD4+ T-cells, l is their per capita death rate, b is the rate of infection
of CD4+ T-cells by virus, e is the per capita rate of disappearance of infected cells, c is the rate of production of virions by
infected cells, c is the death rate of virus particles.

When the therapy drug was given, it affects the rate of death of the infected cells which produce virus particles. But since,
drug may not be 100% effective hence only a part of infected cells will revert back to uninfected class and the remaining will
progress and become productively infected and then produce virus. Typical parameter values are found in [10,3], with time
in days and particle (cell) densities in numbers per cubic millimeter:
s ¼ 0:272; l ¼ 0:00136; e ¼ 0:33; c ¼ 2; b ¼ 0:00027 and c ¼ 50:
Now we introduce the generalized model of the viral dynamic model where a1,a2,a3 > 0. The system is described by the
following system of FODE:
Da1 ðxÞ ¼ s� lx� bxz;

Da2 ðyÞ ¼ bxz� ey;

Da3 ðzÞ ¼ cy� cz:

ð1Þ
Subject to the initial values
xð0Þ ¼ 200; yð0Þ ¼ 0; zð0Þ ¼ 1:
The reason of using fractional order differential equations (FOD) is that FOD are naturally related to systems with memory
which exists in most biological systems. Also they are closely related to fractals which are abundant in biological systems.
The results derived of the fractional system (1) are of a more general nature.

The rest of the paper is organized as follows. In Section 2, a discussion about the fractional calculus theory is presented.
The idea of Generalized Taylor formula and generalized Euler method (GEM) for solving fractional order ordinary differential
equations are discussed in Section 3 and Section 4 respectively. The idea of Homotopy analysis (HAM) method is presented in
Section 5. Numerical results of GEM and HAM are presented in Section 6 with comparisons with the results other methods.
Numerical simulation and discussion is presented in Section 7.

2. Fractional calculus

The field of fractional calculus is almost as old as calculus itself, but over the last decades the usefulness of this mathe-
matical theory in applications as well as its merits in pure mathematics has become more and more evident [11,12]. Fractal
differential equations have attracted many researchers due to their important applications in fluid flow, mechanics, biology,
physics, epidemiology and engineering, and other applications. This is because of the fact that the realistic modeling of a
physical phenomenon does not depend only on the instant time, but also on the history of the previous time which can also
be successfully achieved by using fractional calculus. In other words, previous values of the solution and the derivatives in
fractional order differential equations are required to obtain a solution at a particular instance. The memory effect of the con-
volution in the fractional integral gives the equation increased expressive power. There are several definitions of a fractional
derivative of order a > 0 [13]. The two most commonly used definitions are Riemann–Liouville and Caputo. Each definition
uses Riemann–Liouville fractional integration and derivatives of whole order. The difference between the two definitions is
in the order of evaluation.
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Definition 2.1. Riemann–Liouville fractional integration of order a is defined as:
Jaf ðxÞ ¼ 1
CðaÞ

Z x

0
ðx� tÞa�1f ðtÞdt; a > 0; x > 0;

J0f ðxÞ ¼ f ðxÞ:
Definition 2.2. Riemann–Liouville and Caputo fractional derivatives of order a can be defined respectively as:
Daf ðxÞ ¼ DmðJm�af ðxÞÞ;
Da
� f ðxÞ ¼ Jm�aðDmf ðxÞÞ;
where
m� 1 < a 6 m; m 2 N:
Properties of the operator Ja can be found in [11,12], we mention only the following:
ð1Þ JaJbf ðxÞ ¼ Jaþbf ðxÞ;

ð2Þ JaJbf ðxÞ ¼ JbJaf ðxÞ;

ð3Þ Jatc ¼ Cðcþ 1Þ
Cðaþ cþ 1Þ t

aþc; a > 0; c > �1; t > 0:
The definition of fractional derivative involves an integration which is non local operator (as it is defined on an interval) so
fractional derivative is a non local operator. In other word, calculating time-fractional derivative of a function f(t) at some
time t = t1 requires all the previous history, i.e., all f(t) from t = 0 to t = t1. Many mathematicians have tried to study some
models of infectious diseases models using the fractional calculus. A fractional order differential system for modeling human
T-cell lymphotropic virus I (HTLV-I) infection of CD4+ T-cells is studied in [14] and its approximate solution is presented
using a multi-step generalized differential transform method. An Adams-type predictor–corrector method was applied in
[15] to give numerical solutions for fractional-order into a model of HIV infection of CD4+ T-cells. The authors in [16] con-
sidered the classical mathematical models with saturation response of the infection rate of some diseases like HCV, HIV, and
HBV. They studied the existence of such models and numerical simulations are presented to illustrate the results.

3. Generalized Taylor’s formula

In this section we introduce a generalization of Taylor’s formula that involves Caputo fractional derivatives. This gener-
alization is presented in [17].

Suppose that Dka
� f ðxÞ 2 Cð0; a�; for k ¼ 0;1; . . . ;nþ 1, where 0 < a 6 1. Then we have
f ðxÞ ¼
Xn

i¼0

xia

Cðiaþ 1Þ ðD
ia
� Þð0þÞ þ

ðDðnþ1Þa
� f ÞðfÞ

Cððnþ 1Þaþ 1Þ x
ðnþ1Þa; ð2Þ
with 0 6 f 6 x;8x 2 ð0; a�.
In case of a = 1, the generalized Taylor’s formula (2) reduces to the classical Taylor’s formula.

4. Generalized Euler method (GEM)

Most nonlinear fractional differential equations do not have analytic solutions, so approximations and numerical tech-
niques must be used [18,19]. The decomposition method (ADM), the variational iteration method (VIM), and The homotopy
analysis method (HAM) are relatively new approaches to provide an analytical approximate solution to linear and nonlinear
problems, and they are particularly valuable as tools for scientists and applied mathematicians, because they provide imme-
diate and visible symbolic terms of analytic solutions, as well as numerical approximate solutions to both linear and non-
linear differential equations [8,11,12]. In recent years, the application of the ADM, VIM, in linear and nonlinear problems
has been developed. On the other hand, these methods are effective for small time, i.e., t� 1, however the such methods
cannot solve the problem for larger time and in fact the solution of the chaotic system using HPM is an open problem. Nev-
ertheless by chance, there are cases at which these methods give good approximation for a large range of time (t). A few
numerical methods for fractional differential equations models of infectious diseases models have been presented in the lit-
erature. However many of these methods are used for very specific types of differential equations, often just linear equations
or even smaller classes. In [20], Odibat and Momani derived the generalized Euler’s method that we have developed for the
numerical solution of initial value problems with Caputo derivatives. The method is a generalization of the classical Euler’s
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method. Arafa et al. used GEM to obtain numerical solution of fractional order model of HTLV infection [21] while in [22]
they apply GEM to study the HIV during the primary infection. Consider the initial value problem
ðDa
�yðtÞ ¼ f ðt; yðtÞÞ; yð0Þ ¼ y0; 0 < a 6 1; t > 0: ð3Þ
Let [0, a] be the interval over which we want to find the solution of the problem (3). In actuality, we will not find a func-
tion y(t) that satisfies the initial value problem (6). Instead, a set of points {tj, y(tj)} is generated, and the points are used for
our approximation. For convenience we subdivide the interval [0, a] into k subintervals [tj, tj+1] of equal width h ¼ a

k by using
the nodes tj = jh, for j = 0, 1, . . . , k. Assume that yðtÞ;Da

�yðtÞ and D2a
� yðtÞ are continuous on [0,a] and use the generalized Tay-

lor’s formula (5) to expand y(t) about t = t0 = 0. For each value t there is a value c1 so that [20]
yðtÞ ¼ yðt0Þ þ ðDa
�yðtÞÞðt0Þ

ta

Cðaþ 1Þ þ ððD
2a
� yðtÞÞðc1Þ

t2a

Cð2aþ 1Þ : ð4Þ
When ðDa
�yðtÞÞðt0Þ ¼ f ðt0; yðt0ÞÞ and h = t1 are substituted into Eq. (4), the result is an expression for y(t1):
yðtÞ ¼ yðt0Þ þ f ðt0; yðt0ÞÞ
ha

Cðaþ 1Þ þ ððD
2a
� yðtÞÞðc1Þ

h2a

Cð2aþ 1Þ :
If the step size h is chosen small enough, then we may neglect the second-order term (involving h2a) and get
yðt1Þ ¼ yðt0Þ þ
ha

Cðaþ 1Þ f ðt0; yðt0ÞÞ;
and so on, we can get y(t1), y(t2), . . . , the process is repeated and generates a sequence of points that approximates the solu-
tion, then we can get the general formula for generalized Euler’s method (GEM) when tj+1 = tj + h as follow [20]
yðtjþ1Þ ¼ yðtjÞ þ
ha

Cðaþ 1Þ f ðtj; yðtjÞÞ ð5Þ
for j = 0, 1 , . . . , k � 1. It is clear that if a = 1, then the generalized Euler’s method (5) reduces to the classical Euler’s method.
This method discuss in details in [20].

5. Homotopy analysis method

Many of the (FDEs) that arise in physical or biological situations are highly non-linear. As a result, it is often difficult to
obtain analytical solutions to these problems. Some of the recent analytic methods for solving nonlinear problems include
the Adomian decomposition method (ADM), homotopy-perturbation method (HPM), variational iteration method (VIM).
Liao [23,24] gives an example that effectively illustrates the limitations of traditional perturbation methods: the problem
of a body falling freely through. He then goes on to give an alternative technique known as the basic idea of the HAM method
is to produce a succession of approximate solutions that tend to the exact solution of the problem. The presence of auxiliary
parameters and functions in the approximate solution results in the production of a family of approximate HAM provides us
with a simple way to adjust and control the convergence region of the series solution by introducing the auxiliary parameter
h – 0, and the auxiliary function H – 0. One can get accurate approximations by only a few terms with h = �1 and H = 1. Be-
sides, the so-called ‘‘homotopy perturbation method’’ (proposed in 1998) is exactly the same as the early homotopy analysis
method (proposed in 1992) and is a special case of the late homotopy analysis method in case of h = �1 Consider the follow-
ing system of (FDE):
Dai ðuiðtÞÞ ¼ fiðt;u1; . . . ;unÞ; i ¼ 1;2;3; . . . ; n; 0 6 ai 6 1: ð6Þ
subject to the initial conditions:
uið0Þ ¼ ai; i ¼ 1;2; . . . ;n: ð7Þ
Liao [10] constructed the so-called zeroth-order deformation equation:
ð1� qÞLi½/iðt; qÞ � ui0ðtÞ� ¼ qhiHiðtÞNi½/iðt; qÞ�; i ¼ 1;2;3; . . . ;n; ð8Þ
subject to the initial conditions:
/ið0; qÞ ¼ ai; ð9Þ
where q 2 ½0;1� is an embedding parameter, Ni are nonlinear operators, Li are auxiliary linear operators satisfy Lið0Þ ¼ 0,
ui0(t) are initial guesses satisfy the initial conditions (7), hi – 0 are auxiliary parameters, Hi(t) – 0 are auxiliary functions,
/iðt; qÞ are unknown functions. It should be emphasized that one has great freedom to choose, the auxiliary linear operators
Li, the auxiliary parameters hi and the auxiliary functions Hi. Obviously, when q – 0, since ui0(t) satisfy the initial conditions
(7) and Lið0Þ ¼ 0 we have
/iðt;0Þ ¼ ui0ðtÞ; i ¼ 1;2;3; . . . ; n; ð10Þ



Table 1
The numerical results of x(t).

t GEM HPM HAM RK4

0 100 100 100 100
0.2 100.023 100.023 100.023 100.023
0.4 100.047 100.047 100.047 100.047
0.6 100.071 100.071 100.071 100.071
0.8 100.097 100.097 100.096 100.097
1 100.122 100.123 100.122 100.122

Table 2
The numerical results of y(t).

t GEM HPM HAM RK4

0 0 0 0 0
0.2 0.00434 0.00434 0.004336 0.004336
0.4 0.00715 0.00721 0.007141 0.007154
0.6 0.00908 0.00934 0.009094 0.009081
0.8 0.01049 0.01117 0.010631 0.010492
1 0.01161 0.01276 0.011945 0.011610

Table 3
The numerical results of z(t).

t GEM HPM HAM RK4

0 1 1 1 1
0.2 0.69030 0.69071 0.69059 0.69070
0.4 0.51152 0.51208 0.51237 0.51190
0.6 0.41069 0.41394 0.40994 0.41103
0.8 0.35656 0.37749 0.35148 0.35684
1 0.33053 0.42419 0.32869 0.33073
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when q = 1, since hi – 0 and Hi (t) – 0, the zeroth-order deformation equation (8) and (9) are equivalent to (6) and (7), hence
/iðt;1Þ ¼ ui0ðtÞ; i ¼ 1;2;3; . . . ;n: ð11Þ
Thus, as q increasing from 0 to 1, the solutions /iðt; qÞ various from ui0(t) to ui(t). Expanding /iðt; qÞ in Taylor series with
respect to the embedding parameter q, one has
/iðt; qÞ ¼ ui0ðtÞ þ
X1
m¼1

uimðtÞqm; i ¼ 1;2;3; . . . ;n; ð12Þ
where
uimðtÞ ¼
1

m!

@m/iðt; qÞ
@qm

����
q¼0
; i ¼ 1;2;3; . . . ;n: ð13Þ
Assume that the auxiliary parameters hi, the auxiliary functions Hi(t), the initial approximations ui0(t) and the auxiliary
linear operators Li are properly chosen so that the series (12) converges at q = 1. Then at q = 1, and by (11) the series (12)
becomes
uiðtÞ ¼ ui0ðtÞ þ
X1
m¼1

uimðtÞ; i ¼ 1;2;3; . . . ; n ð14Þ
and now define the vector
~ui ¼ fui0;ui1;ui2; . . . ;uijg; i ¼ 1;2;3; . . . ; j: ð15Þ
Differentiating equations (8) m times with respect to the embedding parameter q, then setting q = 0 and dividing them by
m!, finally using (13), we have the so-called mth-order deformation equations:
Li½uim � vmuiðm�1ÞðtÞ� ¼ hiHiðtÞRimð~uiðm�1ÞðtÞÞ; i ¼ 1;2;3; . . . ;n; ð16Þ
subject to the conditions:



Fig. 1. The densities of the uninfected CD4+ T-cells x(t), when e = 0.1 (a), and e = 0.05 (b): gray solid line (a = 1), dotted line (a = 0.99), black solid line
(a = 0.95).

Fig. 2. The densities of the infected CD4+ T-cells y(t), when e = 0.1 (a), and e = 0.05 (b): gray solid line (a = 1), dotted line (a = 0.99), black solid line (a = 0.95).

Fig. 3. The densities of the free virus z(t), when e = 0.1 (a), and e = 0.05 (b): gray solid line (a = 1), dotted line (a = 0.99), black solid line (a = 0.95).
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uimð0Þ ¼ 0; i ¼ 1;2; . . . ;n; m ¼ 1;2;3; . . . ;n; ð17Þ
where
Rimð~uiðm�1ÞðtÞÞ ¼
1

ðm� 1Þ!
@m�1Nið/iðt; qÞÞ

@qm�1

�����
q¼0

; ð18Þ
and
Xm ¼
0; m 6 1;
1; m > 1:

�
ð19Þ
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If we choose the linear operator Li ¼ Da
i then according to (16), we have
Jai Dai ½uim � vmuiðm�1ÞðtÞ� ¼ hiJ
ai ½HiðtÞRimð~uiðm�1ÞðtÞÞ�: ð20Þ
Finally it seems that, as long as a nonlinear fractional order differential equation has at least one solution, then one can
always construct a kind of zeroth-order deformation equation to get convergent homotopy-series solution as
uim ¼ xmuiðm�1ÞðtÞ þ hiJ
ai ½HiðtÞRimð~uiðm�1ÞðtÞÞ� ð21Þ
and ui = ui0 + ui1 + ui2 + ui3 + ui4 + � � �

6. Numerical results

Generalized Euler method (GEM) and homotopy analysis method (HAM) were applied to solve the system (1) by when
a = 1, then we have compared the results with the results of HPM in [25] and the results of the classical RK4 as shown in
Tables 1–3.

From Tables 1–3, we can deduce that the results of GEM have an excellent agreement with the results of HPM in [25].

7. Numerical simulation and discussion

More realistic pharmacological dynamics, such as first-order kinetics for drug absorption in the gut and blood plasma,
translate into a gradual increase of the drug concentration in the blood, and consequently, a gradual increase of the drug
effectiveness [26]. For the virus dynamics, this leads to an intricate interplay between pharmacological effects, intracellular
delays, the decay of infected cells, and the clearance of free virus particles. In general, the dynamical equations can no longer
be solved analytically, but numerical simulations show that, as expected, the transient phase becomes smoother. The same is
true if one assumes that virus production sets in gradually after the infection. In this section, we assume that a1 = a2 = a3 = a.
x(0) = 200, y(0) = 0, z(0) = 0.000001.

8. Conclusion

In this paper, (GEM) and (HAM) were implemented to approximate the solution of the presented fractional model. A com-
parison was made between the results of GEM and the results of HAM, results of HPM [25] and the results of RK4 in the stan-
dard integer order form, i.e., when a = 1 in (1) to prove the accuracy of GEM. The results show that the solution continuously
depends on the time-fractional derivative and on the values of the parameters. Before therapy, the rate of death of the in-
fected cells is e = 0.05 (see Figs. 1b, 2b and 3b), while during treatment e = 0.1 (see Figs. 1a, 2b and 3b). The death rate of
infected cells increases due to efficacy of drug therapy. As a definition of fractional calculus: lima?1 Da f(t) = Df(t) has been
provided. In the presented problem, the number of susceptible individuals x(t), the number of infected individuals y(t), the
number of isolated individuals z(t) have been obtained, therefore when a ? 1 the solution of the fractional model (1) xa(t),
ya(t), za(t), reduce to the standard solution x(t), y(t), z(t). Finally, the recent appearance of fractional differential equations as
models in some fields of applied mathematics makes it necessary to investigate methods of solution for such equations (ana-
lytical and numerical) and we hope that this work is a step in this direction.
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