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� Metabolomics was employed to
assess 7 functional foods impact on
gut microbiota.

� Insights regarding how functional
foods alter gut metabolic pathways is
presented.

� Increased GABA production was
observed in polyphenol rich
functional food.

� Purine alkaloids served as direct
substrate in microbiota metabolism.
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Functional food defined as dietary supplements that in addition to their nutritional values, can benefi-
cially modulate body functions becomes more and more popular but the reaction of the intestinal micro-
biota to it is largely unknown. In order to analyse the impact of functional food on the microbiota itself it
is necessary to focus on the physiology of the microbiota, which can be assessed in a whole by untargeted
metabolomics. Obtaining a detailed description of the gut microbiota reaction to food ingredients can be
a key to understand how these organisms regulate and bioprocess many of these food components.
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Extracts prepared from seven chief functional foods, namely green tea, black tea, Opuntia ficus-indica
(prickly pear, cactus pear), black coffee, green coffee, pomegranate, and sumac were administered to a
gut consortium culture encompassing 8 microbes which are resembling, to a large extent, the metabolic
activities found in the human gut. Samples were harvested at 0.5 and 24 h post addition of functional
food extract and from blank culture in parallel and analysed for its metabolites composition using gas
chromatography coupled to mass spectrometry detection (GC-MS). A total of 131 metabolites were iden-
tified belonging to organic acids, alcohols, amino acids, fatty acids, inorganic compounds, nitrogenous
compounds, nucleic acids, phenolics, steroids and sugars, with amino acids as the most abundant class
in cultures. Considering the complexity of such datasets, multivariate data analyses were employed to
classify samples and investigate how functional foods influence gut microbiota metabolisms. Results
from this study provided a first insights regarding how functional foods alter gut metabolism through
either induction or inhibition of certain metabolic pathways, i.e. GABA production in the presence of
higher acidity induced by functional food metabolites such as polyphenols. Likewise, functional food
metabolites i.e., purine alkaloids acted themselves as direct substrate in microbiota metabolism.
� 2019 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

In humans, the gastrointestinal (GI) tract harbors approxi-
mately 1014 bacterial cells (i.e., 10 times the number of eukaryotic
cells in the body), [1]. Bacteria contributing to this intestinal
microbiota niche belong to more than 1,000 different species har-
boring more than three million bacterial genes and amount to a
biomass of approximately 2 kg, which can be considered as an
internal ‘‘organ” and provide many functions that are crucial for
the hosts well-being. Moreover, the study of intestinal microbiota
cannot be separated from its environmental context. For instance,
host genetics, geographical location, nutrition, antibiotics, and
other treatments affect the microbiota and its metabolic machin-
ery [2]. The human GI tract hosts a nutrient-rich environment that
supports a commensal microbiome providing crucial functions that
cannot be carried out alone by the host [3,4]. These functions are
both metabolic (colonic fermentation and production of short
chain fatty acids), protective (improving barrier and increasing
the resistance to colonization by opportunistic pathogens, secre-
tion of antimicrobial peptides etc.), and structural (maturation of
the intestinal epithelium and the immune system) [1]. Microbes
present at mucosal sites can also become part of the tumor
microenvironment of aerodigestive tract malignancies [5]. In coun-
terpoise, gut microbiota also functions in detoxification of dietary
or drug components, can reduce inflammation, and help to main-
tain a balance in host cell growth and proliferation [6]. Thus, inter-
rogation of gut microbiota metabolism as such and in response to
dietary intervention requires a holistic perspective. Assigning
microbial communities, their members, and aggregate biomolecu-
lar activities into these categories will require a substantial
research commitment. Beyond metagenomics, functional
approaches, such as metatranscriptomics, metaproteomics, and
metabolomics (together referred to as meta-omics), are now also
rapidly enhancing our knowledge on the gut microbiome. Meta-
omic approaches deliver both qualitative and quantitative data
on genetic potential, transcripts, proteins, and metabolites present
in specific microbial communities under specific conditions. These
approaches also have the potential to highlight the systemic influ-
ence of microbial communities beyond the gut, deciphering the
intricate crosstalk between humans and their microbial ecosys-
tems [7].

Daily diet has an impact on not only our nutrition but also
health and wellness. This has necessitated an increase in the devel-
opment and characterization of food products with additional
effects than just energy, mineral or vitamin supply, the so-called
functional foods. Functional foods can be defined as dietary supple-
ments that in addition to their nutritional values, can beneficially
modulate body functions towards enhancing physiological
responses or reducing a risk of certain disease [8] to the extent that
these can be nutraceuticals, i.e. foods with clearly established
medicinal properties. Upon food ingestion, several mechanical,
chemical and enzymatic processes occur within the GIT to mediate
for its digestion into nutrients or active ingredients, which are then
absorbed to be suitable for use by the body [9].

Gut microbiota mediated metabolic activity can contribute to
the digestion of various dietary compounds as well as transforma-
tion of xenobiotics as in functional foods and supply of micronutri-
ents, thus affecting their potential health effects. In contrast,
functional food components can themselves also affect the growth
and the metabolic activity of gut microbiota and accordingly their
composition and or potential functions [10]. For instance, tea phe-
nolics exhibited an inhibitory effect on certain gut microbiota spe-
cies such as; Bacteroides spp., Clostridium spp. (C. perfringens and C.
difficile), E. coli and Salmonella typhimurium with caffeic acid show-
ing the highest inhibitory activity [11]. In parallel, gut microbiota
can also affect the pharmacological properties of ingested food
products via its biotransformation while in the gut pending if not
absorbed earlier in the GIT [12]. For example, tannins are solely
metabolized by microbial enzymes leading to the formation of con-
jugated derivatives, which have a different pharmacological profile
and being subject to rapid excretion through urine or bile secre-
tions back into the gastro intestinal tract [13]. Whilst most studies
have indeed focused on how gut microbes bio transform functional
foods, few reports are known to us, on how gut microbiota meta-
bolism is affected by these food supplements [14]. Including; the
wide range alterations in the gut microbiota composition imparted
by animal-based vs. plant-based diets [15] as well as, the increased
abundance of Bifidobacterium species in breast-fed infants over
formula-fed ones [16]. Nevertheless, further studies are needed
to investigate the impact of such changes on the normal homeosta-
sis of GI tract.

The main interaction between organisms is of chemical nature.
Obtaining a detailed description of how functional foods interact
with gut microbiota or do affect its biotransformations can be a
key to understand how these organisms regulate our daily food.

Metabolomics is the systematic study of the small-molecule
metabolite profiles of living organisms at certain status or pheno-
type. Such dense chemical information can be acquired through
utilizing hyphenated mass spectrometry techniques such as; gas
or liquid chromatography-mass spectrometry (GC-MS and
LC-MS) [17]. Moreover, untargeted GC/MS-based metabolomics is
routinely used to detect and monitor low molecular weight and
non-polar primary and secondary metabolites, the latter known
to be abundant within a plant matrix [18]. Since the microbiota
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in humans but also in domestic animals is highly diverse and indi-
vidual, and thus incomprehensible and irreproducible, we used a
simplified but therefore more reliable gut microbiota model sys-
tem. Hence we established cultivating a selection of eight bacterial
species that are representing the core functions of the large intes-
tine microbiota [19]. These consortium is comprised of 8 bacterial
species namely; Anaerostipes caccae, Bacteroides thetaiotaomicron,
Bifidobacterium longum, Blautia producta, Clostridium butyricum,
Clostridium ramosum, Escherichia coli and Lactobacillus plantarum.
These species belong to the most abundant phyla of the human
gut microbiota representing the extended simplified intestinal
human microbiota (SIHUMIx) with functionally important bio-
chemical pathways and interactions that likely occur in the human
gut.

In order to cover at least part of the most commonly consumed
food products worldwide either as beverages, condiments, food
color and or herbal drugs [20], we selected the following plant
products: green (GC) and black (BC) coffee (Coffea arabica), green
(GT) and black (BT) tea (Camellia sinensis), Opuntia ficus-indica
(FI), pomegranate (POM) (Punica granatum) and sumac (SU) (Rhus
coriaria). For example, various coffee constituents are reported to
exhibit antioxidant properties and to protect against cardiovascu-
lar, inflammatory and neurodegenerative diseases [21,22]. While,
many health benefits have been attributed to tea products con-
sumption such as antihypertensive [23], antihyperlipidemic [24],
antioxidant [25] and CNS stimulant effects. On the other hand,
owing to its rich flavonoid content, Opuntia ficus-indica fruit is
reported to possess a powerful anti-inflammatory and antioxidant
properties [26]. Numerous studies have reported several health-
related benefits from pomegranate, with nearly every part of the
plant was tested and pharmacological activities such as antimicro-
bial, anti-inflammatory and antioxidant effects were reported [27]
owing to its rich tannin content. Other functional food enriched in
hydrolysable tannins include Rhus coriaria [18] known as sumac. It
is suggested to exhibit hypoglycemic, anti-inflammatory, antimi-
crobial and cytotoxic properties [28].

In order to cover the process of reaction and metabolization,
two different time points at 0.5 and 24 h were choosen. The aim
of this study was to evaluate the impact of the seven functional
foods of common usage in human diets worldwide on selected
bacterial strains, representing the human gut microbiota using a
GC-MS approach, immediately after and 24 h post treatment in
order to build a hypothesis of how gut microbiota respond to these
different treatments and whether a generalized response could be
observed.
Materials & methods

Plant material and extraction

Methanol extracts were prepared from finely powdered green
GC and black coffee BC seeds, green GT and black tea BT leaf, peeled
Opuntia ficus-indica red ‘Rose’ FI fruit powder and sumac SUM lyo-
philized fruits powders by cold maceration over 2 days using 100%
methanol until exhaustion. Extracts were then filtered and sub-
jected to evaporation under vacuum at 40 �C until complete dry-
ness. Extracts were placed in tight glass vials and stored at
�20 �C until further analysis. In case of pomegranate POM, seeds
were extracted and expressed to obtain a juice, which was then
lyophilized until complete dryness and stored as above.
Chemicals and solvents

All solvents and chemicals were of analytical grades and pur-
chased from Sigma-Aldrich, St. Louis, USA.
Gut microbiota culture

The microorganisms consortium used in this study is described
as: the extended simplified intestinal human microbiota – SIHU-
MIx. Microorganisms of the SIHUMIx community, a model for the
intestinal microbiota, were selected according to their occurrence
in humans, the spectrum of fermentation products formed and
the ability to form a stable community [19]. Co-cultured bacterial
species included: Anaerostipes caccae (DSMZ 14662), Bacteroides
thetaiotaomicron (DSMZ 2079), Bifidobacterium longum (NCC
2705), Blautia producta (DSMZ 2950), Clostridium butyricum (DSMZ
10702), Clostridium ramosum (DSMZ 1402), Escherichia coli K-12
(MG1655) and Lactobacillus plantarum (DSMZ 20174). All bacteria
were cultivated in Brain-Heart-Infusion (BHI) medium under
anaerobic conditions at 37 �C and 175 rpm shaking for 72 h prior
to inoculation. All strains were shown to be able to grow equally
in the media. BHI media was prepared by mixing 37 g brain heart
infusion, 0.5 g L-cysteine hydrochloride, 0.001 g resazurin, 10 ml
Vitamin K hemin solution and 5 g yeast extract in one L of sterile
water. Gut bacteria cultured in Brain-Heart-Infusion medium (op-
tical density of 0.1) was left to grow under anaerobic condition at
37 for 18 h till optical density reached 1.7 prior to functional food
extract addition. Details on isolated microbiota consortium strains
and its potential metabolic functions is depicted in Suppl. Table S1
and S2, respectively. For the control including only SIHUMIx strains
and each functional food extract, cultivation was perfomed in trip-
licates leading to 48 samples in total.

Gut microbiota functional food incubation assay

A stock solution was prepared of functional food at a concentra-
tion of 50 mg/ml in 50:50 methanol: (BHI) growth medium and
stored at 4 �C until inoculation. 100 ml and 1 ml of each functional
food stock solution was then aliquoted to a final volume of 10 ml
BHI media containing the gut microbe culture to achieve a final
concentration of 0.5 and 5 mg/ml, respectively. Blank cultures
were prepared by adding an equivalent amount of 50 and 500 ml
100% methanol into the culture medium, kept under the same con-
dition, and compared to the culture receiving no solvent treatment.

Metabolites extraction and GCMS analysis

200 ml of aliquoted culture harvested at different time points
was spiked with xylitol standard solution dissolved in sterile water
to reach a final concentration of 10 mg./ml followed by the addition
of 800 ml acetonitrile/methanol mixture with incubation at 4 �C for
30 min till complete protein precipitation. Mixture was then cen-
trifuged at 12,000g using Eppendorf centrifuge for 4 min, with
100 ml of the supernatant then aliquoted and subjected to evapora-
tion under nitrogen stream till complete dryness. For metabolites
derivatization, 150 ll of N-methyl-N-(trimethylsilyl)-trifluoroace
tamide (MSTFA) was then added to the residue and incubated at
60 ◦C for 45 min. Samples were then analyzed using GC–MS (Shi-
amdzu, Japan). Silylated derivatives were separated on Rtx-5MS
(30 m length, 0.25 mm inner diameter, and 0.25 lm film) column.
Injections were made in a (1:15) split mode, conditions: injector
280 �C, column oven 80 �C for 2 min, rate 5 �C/min to 315 �C, kept
at 315 �C for 12 min. He carrier gas at 1 mLmin-1. The transfer line
and ion–source temperatures were set at 280 and 180 �C,
respectively.

GC-MS multivariate data analyses

MS peak abundance of primary silylated metabolites were
extracted using MET-IDEA software with default parameter set-
tings for GC–MS [29]. The aligned peak abundance data table
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was further exported to principal component analysis (PCA) and
orthogonal projection least squares discriminant analysis (OPLS-
DA) using SIMCA-P version 14.1 software package (Umetrics,
Umeå, Sweden). All variables were mean-centered and scaled to
Pareto variance (Par).

Results & discussion

Two different time aliquots were obtained from functional
foods amended cultures, the first one was at 0.5 h a time at which
no significant biotransformation is expected to occur, and at 24 h
at which most of the biochemical and enzymatic changes would
have occurred. Results revealed that while addition of functional
foods alter microbiota metabolism through either stimulation or
inhibition of its metabolic pathways, not surprisingly functional
food metabolites themselves can also act as substrate for micro-
biota metabolism.

GC-MS metabolite profiling of gut microbiota treated functional foods

GC/MS was employed to characterize microbiota culture meta-
bolism and monitor changes occurring 30 m and 24 h post expo-
sure to the different functional food extracts. Metabolites
detected (as such or as volatile per-trimethylsilylated derivatives)
comprised mostly microbial low molecular weight primary
metabolites viz. organic acids, alcohols, amino acids, fatty acids,
inorganic compounds, nitrogenous compounds, nucleic acids, phe-
nolics, steroids and sugars in addition to few secondary metabo-
lites representative of certain functional foods, e.g. catechins in
case of tea [17]. A total of 131 metabolite peaks (Suppl. Table S3)
was detected from all untreated blank and functional food treated
cultures. The relative percentile levels of all metabolite classes
detected for cultures harvested at 0.5 and 24 h from functional
foods and blank cultures is presented in (Fig. 1), and a representa-
tive chromatogram showing main metabolite classes with their
elution regions can be found in (Suppl. Fig. S1). GC-MS Metabolite
profiling revealed that amino acids form the major class in cultures
harvested at 0.5 h ranging from 44% to 60% in those amended with
food extracts compared to 62% in blank culture at the same time
point (Suppl. Table S3), suggesting that amino acids are mostly
derived from the microbial culture itself. Following amino acids,
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Fig. 1. Relative percentile levels of metabolite classes detected using GC-MS for cultures
POM & SU versus blank.
nitrogenous compounds represented the second most abundant
class, ranging from 14% to 19% in blank gut microbial culture and
those fortified with food extracts at 0.5 h. Compared to amino acids
and nitrogenous compounds that showed comparable levels at
0.5 h incubation, sugars (4–20%) showed a larger variation among
cultures fortified with different food extracts compared to blank
culture with 4.0%, supporting the conclusion that such difference
is attributed to functional foods individual compositions. Sugars
are a major primary metabolite class in most plant foods as anal-
ysed using GC-MS [30]. Other minor classes identified in microbial
cultures included inorganic metabolites (2–7%), phenolics (0.02–
5.6%) and nucleic acids (1.6–2%).

After incubation for a period of 24 h, samples were aliquoted
and analyzed using the same protocol to reveal for metabolite
changes occurring in culture (Fig. 2). A general decrease in amino
acid levels by 16% (0.8 fold) in functional food treated samples,
with the largest decrease observed in sumac treated cultures (0.6
fold) indicate that amino acids may serve as nutrient substrate
for gut microbial growth. Amino acids are utilized by bacteria as
building blocks for microbial protein assembly essential for bacte-
rial growth, or to be fermented as an energy source [31]. This
amino acid decrease trend in functional food treated samples
24 h post incubation is contrasting the untreated blank samples,
showing even a slight 1.1-fold increase in amino acid content.
For nitrogenous compounds a decrease was revealed in all cultures
treated and blank. Most pronounced decreases in functional food
treated samples were observed with sumac, green tea and green
coffee with 0.6, 0.8 and 0.8 fold reductions, respectively. Bacteria
can utilize nitrogenous compounds such as amino propanoate as
a single carbon source or energy source [32]. Interestingly, a signif-
icant decrease in sugar levels is observed in functional food treated
samples by 0.7 fold compared to 0.25 fold decrease in blank sam-
ples. The most significant decrease of sugars and amino acids in
functional food treated samples was observed in GT and BT (0.1
fold), and GC (0.5 fold), i.e. polyphenol rich plant products.
Metabolite classes that showed an opposite pattern, i.e. an increase
over time (0.5 versus 24 h) included organic acids and low molec-
ular weight phenolics, most evident in case of POM and GT
amended cultures compared to blank. Increase is likely attributed
for microbiota degradation of high molecular weight plant pheno-
lics to its simpler organic and phenolic acids. Detection of high
0.5 hr. 24 hr. 0.5 hr. 24 hr. 0.5 hr. 24 hr. 0.5 hr. 24 hr.

GT POM SU Blank

Amino acid
Nitrogenous compound
Steroid

harvested at 0.5 and 24 h from functional foods amended culture: BC, BT, FI, GC, GT,



Fig. 2. Schematic workflow to assess functional food on gut microbiota metabolism used in this study: I) gut microbiota culture exposure to food extracts i.e., black coffee
(BC), green coffee (GC), black tea (BT), green tea (GT), Ficus (FI) pomegranate (POM) and sumac (SU) by addition to growth medium versus untreated blank, II) metabolites
extraction & analysis using GC–MS, III) multivariate data analysis i.e. PCA and OPLS.
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molecular weight phenolics cannot be achieved using GC-MS and
has yet to be performed using liquid chromatography mass spec-
trometry (LC-MS) [33]. Several bacterial species are reported to
possess hydrolytic enzymes necessary for plant polyphenols degra-
dation, e.g. through dehydroxylation, decarboxylation, ring cleav-
age or oxidation, ultimately generating simpler phenolic and
organic compounds [34]. Likewise, nucleic acids increase upon
incubation, especially in case of a GC amended culture at 6-fold
increase after 24 h compared to 0.5 h treatment versus a 3-fold
increase in case of the blank culture. A pie chart showing relative
percentile levels of the different metabolite classes analyzed in
microbiota culture fortified with the different treatments at 0.5
and 24 h is given in Suppl. Fig. S2A–G. Provided below is an over-
view of the major changes observed for metabolite classes in blank
culture compared to those amended with food extracts.
Canonical amino acids

Ornithine, alanine and isoleucine were the most abundant
amongst the detected amino acids, and showed a decline of 0.8,
0.14 and 0.32 fold, respectively, upon incubation in all cultures.
An exception to this pattern was observed in case of phenylalanine,
glutamic and pyroglutamic acid in both treated and blank cultures.
Phenylalanine showed ca. 1.8-fold increase in all functional foods
compared to 2.5-fold increase in blank culture, likewise pyroglu-
tamic acid showed an average of 1.7-fold increase in all functional
foods compared to 4-fold increase in blank at 24 h treatment, i.e.
the increase in treated cultures also was reduced vs. blank. Despite,
its reduction or even complete depletion upon GC, FI and POM
treatment, in case of the other functional foods, glutamic acid
showed a ca. 2.3-fold increase which is slightly reduced vs. the
untreated blank with a 4.5-fold increase. This might be attributed
to specific producers of these amino acids i.e. E. coli induced pro-
duction of phenylalanine [35] and L. plantarum mediated produc-
tion of glutamic and pyroglutamic acid [36], both present in the
consortium culture. Amino acids play multiple roles in gut micro-
biota either via protein fermentation or internally to synthesize
essential amino acids to be further utilized as building blocks for
cellular composition [37], to serve as signaling molecules between
microbial cells [38] or within the host [39], or to be used as an
energy source [40]. Nevertheless, such increase failed to lead to
an increase in the overall amino acid percentile levels as the afore-
mentioned reduction of other amino acids was much more signif-
icant with larger negative fold changes.
Other nitrogenous compounds

The most pronounced decrease in nitrogenous compounds was
detected for 3-amino propanoate at comparable levels in func-
tional foods amended and blank cultures (ca. 0.16-fold). Human
gut microbiota produces various short chain fatty acids (SCFAs)
with propanoate as major metabolic product of anaerobic fermen-
tation. Along with butanoate, propanoate is a major component in
microbiota metabolic pathways for the synthesis of other SCFAs
[41]. It does play a significant role during irritable bowel syndrome
if reduced by medication [42]. Bacterial genera such as Bacteroides,
Blautia, Eubacterium, Escherichia and Clostridium can ferment
nondigestible dietary carbohydrates and amino acids to propionate
through either 1,2-propanediol or succinate pathways (Suppl.
Fig. S3) [43,44].

In contrast, other nitrogenous compounds viz. gamma amino
butyric acid (GABA) increased significantly in all food extract
amended cultures over time compared to a reduction in case of
blank, likely attributed to bacterial fermentation of plant derived
amino acids i.e. L-glutamic acid to GABA [45]. The highest increase
in GABA levels was detected in FI and POM with ca. 3 and 2 fold
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increases, respectively. Whether an increase in GABA levels occurs
similarly in the gut upon fermentation of functional foods is
unclear, but if so it will contribute to a biological effect yet to be
determined in its extent. GABA is an inhibitory neurotransmitter
that has many reported pharmacological effects. It also is involved
in various neurological disorders including epilepsy, seizures, con-
vulsions, Huntington’s disease, and Parkinsonism [46]. The gut
microbiota related brain axis effect (Brain-Gut-Microbiome Axis)
is a hot topic regarding all CNS disorders, and alterations in
brain-gut-microbiome communication is found to be involved in
the pathogenesis of several disorders [47].

Other detected nitrogenous compounds include cadaverine
derived from lysine via its decarboxylation [48]. Gut microbiota
is reported to synthesize cadaverine under high protein diet [49].
This is in general related to biogenic amino compounds including
putrescine and spermidine produced via decarboxylation of other
amino acids. Polyamines have been reported to stimulate cell divi-
sion of gut microbiota, e.g., of E. coli [50] and also to impart health
benefits to the host such as regulation of growth and aging, and
prevention of metabolic and neurodegenerative disorders [51].
Microbiota cell uptake of polyamines may explain the lower cadav-
erine levels at 24 h. However, the relatively high levels of putres-
cine may indicate biosynthesis overweighing microbiota cell
uptake and can be explained by the fact that putrescine is synthe-
sized from ornithine [51,52], detected at higher levels at 0.5 h and
showing a decrease with incubation time (Suppl. Fig. S4). Polya-
mine generation reaction is found to favor of SCFA synthesis, dri-
ven by certain bacterial strains such as E. coli [53] also present in
this microbial consortium (Suppl. Table S3). In this study, a reduc-
tion in putrescine was observed to be concurrent with higher lactic
acid and succinic acid levels in certain cultures, which support the
competition between polyamine and SCFA synthesis pathways on
amino acid substrates.

Sugars

Sugars identified included monosaccharides, disaccharides and
sugar alcohols. Generally, sugars showed lower abundance 24 h
post incubation as expected due to their utilization as energy
source and as carbon source for the generation of SCFA [54] as evi-
denced in strains of Bifidobacterium [55]. For all treatments there
was a decrease, with the exception of SUM (Rhus coriaria) that
showed higher sugar levels at 24 h compared to 0.5 h (Suppl.
Table S3; Suppl. Fig. S5). A neuroprotectant sugar that could exert
its effect at the gut level is trehalose which showed one of the most
pronounced decreases, being completely depleted upon incubation
likely degraded by trehalase enzyme secreted by the microbiota
[56]. Only oral intake of trehalose subsequently influenced by gut
microbiota but not i.v. injection was found to exert the reported-
neuroprotection. An increasing body of evidence for gut microbiota
effects on CNS suggests that trehalose exerts its neuroprotective
role through microbiota-gut-brain signaling [57]. BT, GT and BC
cultures showed the highest levels of trehalose at 4–5% followed
by POM and GC (3–4%). Sugar abundance appeared to be depen-
dent on the functional food type i.e., fructose was found most
abundant in POM and SUM cultures (Rhus coriaria), Suppl.
Table S3, whereas sugars more specific to a certain culture
included sucrose and 3-deoxy-D-arabino-hexonic acid found exclu-
sively in GT/BT and GC/BC, respectively. The type of carbohydrates
in functional foods was reported to influence gut microbiota com-
position [14].

Organic acids

Microbiota is known to metabolize carbohydrate into short
chain fatty acids (SCFA) i.e. lactic acid to be used as an energy
source [58]. Also proteins and free fatty acids act also as precursors
for SCFA production by microbiota [38]. For example, glycine, glu-
tamate, ornithine and threonine act as precursor of acetate,
whereas threonine, lysine and glutamate yield butyrate, and thre-
onine can be used as substrate for propionate production [38]. A ca.
2-fold increase in SCFA levels was observed upon incubation in all
functional food amended cultures. It was not observed in blank
untreated culture (Suppl. Table S3, Suppl. Fig. S6). A major acid that
showed such a pattern is succinic acid, likely produced as a sugar
fermentation product [59–61] as evident by a decrease in e.g. fruc-
tose (Suppl. Table S3). Elevated succinate levels within the gut
lumen have been associated with microbiome disturbances (dys-
biosis), as well as in patients with inflammatory bowel disease
(IBD) [62]. Other sources of succinic acid in the body involve the
tricarboxylic acid (TCA) cycle within host cells, though unlikely
to function here under hypoxic conditions. Lactate, another carbo-
hydrate fermentation product [63] mediated via lactic acid bacteria
(LAB) i.e. Lactobacillus plantarum, [64] also increased upon incuba-
tion at 24 h, especially in POM, SUM, and FI treated samples at 18.7
(0.2 fold), 15.3% (0.15 fold) and 6.3% (0.05 fold), respectively, com-
pared to trace levels in blank. A similar (secondary metabolite)
profile of changes was observed for hydrolysable tannins, showing
enrichment in POM and SUM. This might account for the similar
metabolic response observed in their respective microbiota
cultures.

Phenolics

Phenolics comprise a metabolite class that is almost solely
derived from functional food extracts and was close to being
absent in the blank culture. Our interest in reporting these metabo-
lites herein is that they are rather important plant natural products
with many proven or claimed health benefits including influence
on microbes [14]. Thus a potential influence of its composition or
its levels on gut microbiota metabolism is likely to impact func-
tional food ultimate health effects. Catechin was found exclusively
in GT and BT cultures at 0.5 h and to increase at 24 h ca. 2–3 fold.
This can be attributed to its polymers or higher mw conjugates
cleaved. e.g. (�)-epicatechin gallate (ECG) is expectedly found
enriched in tea samples, and this is supported by a ca. 4-fold
increase in gallic acid levels after 24 h. Although catechins were
detected almost exclusively in GT and BT, gallic acid was present
in most cultures though at lower levels especially for FI, SUM
and POM, but it was absent from blank, suggestive of being derived
from hydrolysis of plant phenolic conjugates or polymers. e.g. by
bacteria such as herein L. plantarum known to act on hydrolysable
tannins [24,26]. L. plantarum is the only bacterial species reported
to have esterase (tannase) and gallate decarboxylase enzymes nec-
essary for such a degradation. Gallic acid is an important dietary
supplement that has several health benefits including anti-
oxidant, anti-inflammatory, antibacterial, anti-allergic, anti-
mutagenic and anti-carcinogenic effects [65]. Among the reported
significant antibacterial activity of gallic acid was its activity
against bacterial strains such as; E. coli [66] and Bifidobacterium
[67] available within the used consortium.

Nucleic acids

Nucleic acids i.e. purines were detected in most samples espe-
cially GT and GC. Increase in its levels is attributed to gut micro-
biota metabolism effected by or derived from caffeine
catabolism, with caffeine found to be enriched in these two func-
tional foods. Nucleic acids showed a general pattern of an increase
upon incubation in most food fortified cultures and blank as
observed in case of uracil and to a lesser extent in adenine (Suppl.
Table S3). Hypoxanthine was also detected in all amended cultures
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as well as in blank as a byproduct of microbial oxidation of nucleic
acids through a salvage pathway to act as a nitrogen source as well
as energy sources and promoting protective functions to the colo-
nic epithelium [60,68]. Positive correlations of hypoxanthine and
uracil with Bacteroidetes species Alloprevotella [69] was reported.
In contrast, xanthine was detected exclusively in GC and GT
amended cultures as a metabolic microbiota product of methylx-
anthines i.e. caffeine, theobromine and theophylline enriched in
green coffee and tea (Suppl. Fig. S7) [22,23].

Unsupervised and supervised multivariate data analyses of GC/MS
dataset

Considering the complexity of acquired data in terms of the
large number of specimens and monitored metabolites
(96 � 131), Fig. 1, multivariate data analyses were employed to
further determine the impact of treatment on microbiota metabo-
lism in an untargeted manner. Untargeted multivariate analysis
tools such as principle component analysis (PCA) and orthogonal
partial least squares discriminant analysis (OPLS-DA) can help
reveal for differences between samples and postulate hypothesis
related to the effect of applied functional food on microbiota meta-
bolism. Principle component analysis (PCA) is an untargeted mul-
tivariate analysis tool that is used to bring multidimensional
datasets into a two-dimensional plane that can be graphically rep-
resented as scatter plots. In the two-dimensional plane, data point
coordinates on principle component 1 (PC1) and PC2 vectors are
assigned to account for the maximum variability of multidimen-
sional data [70,71].

PCA analysis of the whole dataset

PCA was applied to the whole sample dataset to determine
metabolome heterogeneity among all samples examined with no
sort of samples classification. The principle component PC1/PC2
score plot derived from the whole GC–MS data accounted for
42% of the total variance (R2). This is not a high value and shows
that variance between samples is high and needs more dimensions
to cover all aspects. The whole pool of samples in the score plot,
however, could be segregated into two big clusters distributed
along PC 1 (Fig. 3A). These two major clusters appeared to be based
upon incubation time that is (0.5 h versus 24 h incubation time as
revealed in (Fig. 3D), suggesting this to be the most-variable
parameter overcoming others. Labeling of samples based on the
administered functional food extract dose levels (5 mg/mL,
0.5 mg/mL) and blank samples showed no clear segregation of
sample in the score plot (Fig. 3B). The same result was also
obtained when samples were colored based upon the amended
functional food extract type (Fig. 3C), and in all cases they show
overlap among specimens. All findings pinpointed that monitored
metabolites are mostly derived from microbiota culture and not
much represented by metabolites from amended functional foods
since either of the identified big clusters (Fig. 3D) contained func-
tional food extract treated samples along with their corresponding
blank samples. Hierarchical cluster analysis (HCA) is another mul-
tivariate data analysis tool that provides a mean of intuitive graph-
ical abstract of samples clustering pattern [72]. HCA analysis
confirmed PCA results (Suppl. Fig. S8) by showing clear samples
segregation aliquoted at 0.5 h (highlighted in a green box) com-
pared to samples harvested at 24 h (blue box) disregarding treat-
ment type (either blank or functional food treated samples) or
dose level (0.5 mg/mL & 5 mg/mL). Results of whole sample data
set modelling either from PCA or HCA fall in agreement with
another report showing the impact of transient time on gut micro-
biota metabolites composition [40]. To pinpoint for metabolites
mediating for such segregation and contributing to samples segre-
gation with time course, the corresponding loading plot was
inspected. Among detected metabolites, amino acids i.e. phenylala-
nine, ornithine and to a lesser extent organic acids, especially lactic
acid, accounted for most of the variability observed along PC1
(Fig. 4).

PCA classification based upon functional food type versus blank

Due to the low model variance coverage (R2) and predictability
(Q2) as revealed from whole sample datasets (Fig. 3), another PCA
attempt was adopted to model each functional food extract
amended culture vs. the blank at the two time points at 0.5 and
24 h (Suppl. Fig. S9). Both functional food and blank samples ali-
quoted at 0.5 h were positioned on the right side of PC1 with pos-
itive p values. Whereas its counterpart aliquots harvested at 24 h
were aligned on the left side of PC1, with an overall covered vari-
ance from PC1 and PC2 from each dataset (Suppl. Fig. S9) showing
in general higher variance coverage than of the whole sample data-
set (Fig. 3). The score plots of BC (A), GC (B), BT (C) and GT (D) trea-
ted cultures showed consistent patterns of samples segregation
being mostly based upon harvest time. Both blank and treated
samples aliquoted at 0.5 h showed overlapping masses clustering
at the positive side of PC1 versus samples aliquoted at 24 h show-
ing two well-separated clusters distributed along PC2, which indi-
cated no metabolome difference detected at the 0.5 h harvest point
between blank samples and functional food. The separation of
functional food treated samples at the positive side of PC2 versus
its blank samples being located at the opposite side suggested for
contributions of functional food metabolites or its biotransformed
products in such a discrimination. It should be noted, that other the
three additives FI (E), POM (F) and SUM (G) showed atypical behav-
ior, in which both functional food and blank sample aliquoted at
24 h showed non-separable masses contrary to the previous mod-
els (Suppl. Fig. S9). In contrast, in both POM model score plot
(Suppl. Fig. S9F) high scattering along PC2 was observed at either
0.5 h or 24 h incubation time indicating a higher influence of func-
tional food composition on the microbiota metabolism. The same
holds for the case of SUM (Suppl. Fig. S9G).

PCA classification based upon functional food type versus blank at
0.5 h

To better reveal for contributions from untransformed func-
tional food metabolites in sample segregations as observed in
Suppl. Fig. S9, we attempted to model each functional culture
amended along with its corresponding blank sample aliquoted at
0.5 h, a time at which no significant biotransformation by micro-
biota is expected to occur (Suppl. Fig. S10). For BC (A), GC (B), BT
(C), and GT (D) lower variance coverage was revealed compared
to that in (Suppl. Fig. S9), and overlap between treatment and
blank samples at both dose levels indicate that the functional food
metabolite interference at 0.5 h is negligible. Such pattern was
nevertheless not observed in case of POM (F) and SUM (G) models
showing no overlap between functional food treated samples and
blank, suggestive for significant functional food native metabolite
interference within 0.5 h, and accounting for specimens segrega-
tion. The loading plot of pomegranate model revealed that sugars,
especially fructose, short-chain fatty acid (SCFA), here lactic and
succinic acid, and the nitrogenous compound and neuroactive
amino acid GABA were already upregulated in the treated cultures
compared to blank.

OPLS-DA classification based upon incubation time at 0.5 h versus 24 h

Considering that unsupervised data analysis failed to provide
clear segregation in response to treatment for each respective time



Fig. 3. PCA analysis of GC-MS metabolites dataset at 0.5 and 24 h for all treatments and blank. (A) PCA analysis of whole sample dataset unclassified. (B)PCA analysis of whole
sample dataset classified based upon dose level (blank samples [Green], 0.5 mg/mL functional food extract treated sample [Red], and 5.0 mg/mL functional food extract
treated sample [Black]). (C) PCA analysis of whole sample dataset classified based on functional food type (Black coffee, green coffee, black tea, green tea, ficus, sumac,
pomegranate, and blank). (D) PCA analysis of whole sample dataset classified based on incubation time (0.5 h [Black], and 24 h [Red]).

Fig 4. PCA Loading plot of whole sample dataset presented in Fig. 3 and showing
metabolites prevalent at the 0.5 h incubation with positive p value (to the right)
metabolites prevalent at the 24 h with negative p value (to the left). Sugar fructose
contributed the some functional food treated sample discrimination (such as
pomegranate sample) along with PC2.
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point, supervised orthogonal partial least squares discriminant
analysis (OPLS-DA) was further employed to model each treatment
separately viz. BC, GC, BT etc. Samples were classified as such by
pooling samples for each treatment for the 2 dose levels 0.5 and
5 mg/ml as one class group at 0.5 h (a) versus 24 h (b) as another
class group (Suppl. Fig. S11). Compared to PCA (Suppl. Fig. S9), each
OPLS model showed clearer sample segregations (Suppl. Fig. S11).
Model validation was based on estimating the total variance (R2),
prediction goodness parameter (Q2) and p-value as detailed in
(Suppl. Table S4). All of the models showed high repeatability, pre-
diction and significantly low regression p-values suggestive of no
overfitting of these models. Investigation of the S-loading plot
allows to visualize both the covariance and the correlation struc-
ture between the X-variables and the predictive score t[1] [73]
for each respective OPLS-DA model (Fig. 5) revealed for multiple
findings. Metabolites with a positive p[1] value indicate an
increase upon incubation, whereas metabolites with a negative p
[1] value indicate higher abundance at 0.5 h and a decrease upon
incubation (Fig. 5A–H).

Metabolites belonging to amino acids/nitrogenous compounds
i.e., alanine, amino propanoate, isoleucine, valine and ornithine
exhibited significant model influence at 0.5 h (negative p[1] on S-
plot). In contrast, other metabolites related to the same classes
such as leucine, methionine, glutamic acid and phenyl alanine
showed significant model influence at 24 h (positive p[1] on S-
plot). These findings propose mixed microbial metabolic activities
that are either to utilize some of these amino acids as a substrate to
form other compounds (catabolism) [38] or to be synthesized from
other metabolites (anabolism). To provide stronger evidence for
metabolites reprograming and to understand metabolic pathways,
a Spearman rank correlation was employed to compute all pair-
wise correlations between metabolites across the entire dataset,
depicted as a metabolite-metabolite correlation heat map (Suppl.
Fig. S12). This metabolite correlation analysis shows a negative
correlation of ornithine with succinic acid (r2 = �0.4) and tartaric
acid (r2 = �0.35). Similar to ornithine, alanine shows a negative
correlation with succinic acid and tartaric acid, in addition to
fumaric acid (r2 = 0.43) and malic acid (r2 = 0.65). Alanine reduced
levels are attributed to either serve as building unit in cell wall for-
mation (peptidoglycan) or in its catabolism via aminotransferase
into pyruvate [74]. In contrast to this, amino acids such as pheny-
lalanine, threonine and pyroglutamic acid show positive p[1]-
values in the S-plot with an increase upon incubation time
(Fig. 5F–H). Though threonine is reported to be catabolized into
acetate, microbiota can also synthesize it internally [38] and this
can account for its increase with elapsed time. Such hypothesis is
supported by the correlation analysis showing positive correlation
of threonine with acids i.e. maleate (r2 = 0.64), succinate (r2 = 0.5)
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and tartarate (r2 = 0.5) which all showed upregulation with incu-
bation time. Studies revealed that microbiota consumption and
synthesis of amino acids is dependent on strain [75] and incuba-
tion time [40]. Sampling times for more than 24 h or utilization
of several strains for each microorganism in the future can provide
better evidence for such a hypothesis.
SCFA major metabolite markers of gut microbiota, i.e. lactic acid
(Fig. 5E–G) and succinic acid, show higher p[1] values in the S-plot
of (Fig. 5F), indicating an increase over time at 24 h by up to 17 fold
in the pomegranate case. This most probably is due to its role as
by-products of microbial metabolism. Other than primary metabo-
lites converting into SCFA, succinic acid showed an increase with



Table 1
Major metabolites differentiating functional food treated samples against blank at 24 h post incubation as revealed from OPLS analysis.

Metabolite Category BC BT Fi GC GT POM SU

Lactic acid Acid (+) (+) (+++) (++) (+) (+++) (+++)
Succinic acid (++) (++) (+) (++) (+) (++) (+)
3-Deoxytetronic acid (+)
Fumaric acid (+)
Glycine Amino acid (+) (+) (+)
Aspartic acid (+) (+)
Isoleucine (+) (++) (++) (+)
Threonine (+) (+) (+) (+)
Ornithine (+)
Valine (++) (+++) (++) (+) (+)
GABA Nitrogenous compound (++) (++) (++) (+) (+) (++) (+)
Amphetamine (++) (++) (++) (+) (++) (+)
Norvaline ester derivative (+) (+) (+)
Purine Nucleic acid (++) (++)
Uracil (+)
2-Hydroxy-3-methylvaleric acid Phenolic (++) (++) (++) (++) (++) (+)
Catechin (+) (+++)
Gallic acid (++) (+++) (++)
D-arabino-3-deoxy Hexonic acid Sugar (++) (+) (++) (+) (+)
Ribose-O-methyloxime (+)
Fructofuranose (+)
Fructose (++) (++++)
Sorbose (+)
Unknown sugar (+)

Symbols (++++) indicate very high influence of S-plot, (+++) high influence, (++) intermediate, and (+) low influence.
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time (+p value in S-plot) acting as fermentation product of sec-
ondary metabolites. e.g., chlorogenic acid (CA) was reported to be
fermented into succinic acid by microbiota [76], and could account
for its 2.4-fold increase in BC at 24 h (Suppl. Table S3). CA is the
main active constituent in coffee recognized as its slimming factor.
OPLS-DA classification based upon functional food type versus blank at
24 h

Considering that all of the above metabolic changes (Fig. 5)
were related to the time course metabolism of microbiota and to
help identify other metabolic changes specifically influenced by
certain functional food treatment, OPLS-DA was performed by
modelling each treatment at 24 h versus its blank sample at the
same point for the 2 different dose levels. Derived S-plots for each
case are presented in (Suppl. Fig. S4) and with metabolites that
showed the strongest variation influence as reflect by their p-
values listed in Table 1.

Among the treatment models, SUM and POM amended cultures
exhibited the highest discrimination from blank samples at 24 h
incubation time owing to their high content in fructose followed
by lactic acid and to a lesser extent in case of FI (Opuntia) treatment
(Suppl. Fig. S4G & F). With regard to major markers indicative of
secondary metabolite biotransformations by gut microbiota as
revealed from S-plots, gallic acid was enriched in black tea treated
samples (Suppl. Fig. S4C) owing to gut microbiota effect on
theaflavin-3-gallate, a major polyphenol in black tea [77]. Other
phenolics revealed as markers for a treatment effect (at 24 h)
include catechin, gallic acid, and valeric acid derivatives especially
in GT and BT samples (Suppl. Fig. S4C & D). Cleavage of ring C in
catechin by microbiota is reported to yield valeric acid derivatives
[77].

In contrast to these treatment specific markers revealed exclu-
sively for GT and BT, metabolites such as sugars, organic acids, i.e.
lactic and succinic acid, and GABAwere detected as significant con-
tributors to variation in almost all functional food treated cultures
compared with blank samples at 24 h (Suppl. Fig. S4A–G). Gut
microbiota such as Lactobacillus species and E. coli have been
reported to secrete GABA as an acid resistance mechanism at low
pH which may explain co-appearance of GABA with organic acid
increase and other low acidic metabolites such as polyphenols in
OPLS –derived S plot of several functional food treatments (Suppl.
Fig. S4A, C, E & F). GABA can also be utilized by bacteria as carbon
source through conversion to succinate which enters the tricar-
boxylic acid cycle [78] and this may explain the coexistence of
GABA and succinic acid (r2 = 0.40) as strong influencers in S-Plots
of functional food treated samples (Suppl. Fig. S4C & F). Such
metabolite correlations could not be readily revealed from visual
inspection of results and highlight the value of modelling data in
results interpretation.

Accumulation of a norvaline derivative (Table 1), a branched
chain non-proteinogenic amino acid has been observed in BT and
FI treatments (Suppl. Fig. S4C & E). Previous research showed that
this compound could only accumulate in high glucose based min-
eral salt media at limited oxygen supply as modified metabolic
route [79]. However, norvaline ester showed higher abundance
with elapsed time in functional food treated samples except in case
of POM and SUM (Rhus coriaria). Pyruvate, a sugar metabolism
intermediate, may convert to norvaline via a-isopropyl malate syn-
thase instead of being converted to SCFA, i.e. lactate, which may
explain its absence in POM and SUM both showing upregulation
of lactate and succinate at 24 h (Suppl. Fig. S4F & G).
Conclusion

Our results provide insights into gut microbiota altered meta-
bolisms in response to different functional food extracts at the
metabolite level and define general and specific biomarkers for
each functional food type. In general, functional food amendment
to gut microbiota appeared to alter its metabolism in two different
scenarios. First, functional food components can serve as a sub-
strate to microbiota metabolism as in case of purine alkaloids such
as caffeine acting as precursors of purine by microbiota demethy-
lation. An alternative mechanism is that functional food compo-
nents modify the extent, existing metabolic pathways are
activated within microbiota, showing e.g. GABA production in



M.A. Farag et al. / Journal of Advanced Research 23 (2020) 47–59 57
presence of higher acidity induced by metabolites such as polyphe-
nols and organic acids. Nevertheless, it should be noted that cur-
rent work does not look at microbial strains growth in response
to different functional food treatments, further analysis using 16S
ribosomal RNA sequencing and as well viability of each individual
strain in the presence of each tested functional food should be
pursued.

This study demonstrated the metabolic pathways adopted by
microbiota in the generation of SCFA through either nitrogenmeta-
bolism of amino acids or carbon metabolism of sugars lead to an
ultimate increase of SCFA under consumption of (most members)
of these metabolic precursors (Fig. 6A and B). However, most of
these changes are related to the change the microbiota environ-
ment encounters with time and is not specific for certain func-
tional foods with a few exceptions.

Fig. 6A outlines the major changes in microbiota primary
metabolite classes viz. sugars, nitrogenous compounds, acids and
amino acids in response to functional food treatments and the
underlying mechanism (Fig. 6B). Here three (partially overlapping)
groups can be separated: caffeine containing additives, changing
expectedly nitrogeneous compound metabolism, polyphenolics
rich additives like tea, changing a number of properties outlined
in detail above, and pomegranate and sumac, which inflict the lar-
gest differentiations through their sugar (fructose) and phenolics
content.

Further studies that apply high resolution visualization of
metabolite pools, such as nanoscale secondary ion mass spec-
trometry, coupled with stable isotope tracers will serve to provide
further insight into the potential roles of free metabolites and
their exact metabolic origin considering the complexity of
A

B

Fig. 6. Diagram sketch outlining the major alterations in microbiota metabolic pathw
metabolites amino acids, nitrogenous compounds, sugars, and organic acids after incubat
line). Measurement points indicate abundance in functional food treated samples. All poi
points within the gray frame indicate lower abundance with time. While organic aci
compounds and sugars are reduced with time (except for sumac treated sample with reg
metabolic pathways adopted by microbiota to convert amino acids and sugars into SCFA t
findings of the Radar chart.
microbial metabolisms. It also remains to clarify, if additional
information on non-volatile metabolites, which might be cap-
tured by LC-MS, and a correlation to the strain composition
changes with time, will be useful or not. These data, coupled with
the ongoing outputs from rapidly developing additional ‘‘omics”
studies (i.e., genomics, transcriptomics, and proteomics) will aid
in further elucidating the metabolic cross-talk both within and
between partners, which is essential for maintaining a functional
healthy gut environment.

Obviously neither our functional food selection nor that of the
microorganisms does cover all types, and no setup can do that.
But we see that the platform presented here can be employed to
assess other systems, containing e.g. other metabolite classes like
saponins, sulfur organics like in garlic or onion, or even of complex
mixture as typical in traditional Chinese medicine TCM.

The above mentioned limitation of this study to metabolites
amenable to GC–MS detection, i.e. those of primary origin except
for a few simple phenolics, may underpin the impact of secondary
metabolites not detected by this analytical platform such as plant
polyphenols or not represented in this study at all as with plant
terpenoids in leading to a variation in microbiota composition
and metabolism. Still, clear evidence for functional food compara-
ble metabolites composition impact on microbiota culture metabo-
lism was observed, exemplified in xanthine rich extracts i.e. GC,
GT, BC, BT versus hydrolysable tannins in POM and SUM. Further,
clinical studies ought to be considered in the future by analyzing
stool metabolism in humans exposed to selected functional foods
for defined periods, which would provide a true translation of this
in vitro yet fundamental assay results to future research in the field
of functional food – gut microbiota interaction.
ays. (A) Radar Chart summarizing the relative change in abundance of primary
ion for 24 h compared to their relative abundance at 0.5 h (identified in dashed gray
nts outside the gray dashed frame indicate increased abundance with time whereas
d increase in all functional food treated samples, all of amino acids, nitrogenous
ard to sugar abundance 24 h post incubation). (B) Schematic diagram outlining the
hrough either Carbon metabolism or Nitrogen metabolism and explaining the part A
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