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Abstract
The tumor cell–derived hyaluronidase (HAase) HYAL-1 degrades hyaluronic acid (HA) into proangiogenic

fragments that support tumor progression. Although HYAL-1 is a critical determinant of tumor progression and
a marker for cancer diagnosis and metastasis prediction, it has not been evaluated as a target for cancer therapy.
Similarly, sulfated hyaluronic acid (sHA) has not been evaluated for biological activity, although it is an HAase
inhibitor. In this study, we show that sHA is a potent inhibitor of prostate cancer. sHA blocked the proliferation,
motility, and invasion of LNCaP, LNCaP-AI, DU145, and LAPC-4 prostate cancer cells, and induced caspase-8–
dependent apoptosis associated with downregulation of Bcl-2 and phospho-Bad. sHA inhibited Akt signaling
including androgen receptor (AR) phosphorylation, AR activity, nuclear factor kB (NFkB) activation, and VEGF
expression. These effects were traced to a blockade in complex formation between phosphoinositide 3-kinase
(PI3K) and HA receptors and to a transcriptional downregulation of HA receptors, CD44, and RHAMM, along
with PI3K inhibition. Angiogenic HA fragments or overexpression of myristoylated Akt or HA receptors blunted
these effects of sHA, implicating a feedback loop between HA receptors and PI3K/Akt signaling in the
mechanism of action. In an animal model, sHA strongly inhibited LNCaP-AI prostate tumor growth without
causing weight loss or apparent serum-organ toxicity. Inhibition of tumor growth was accompanied by a
significant decrease in tumor angiogenesis and an increase in apoptosis index. Taken together, our findings
offer mechanistic insights into the tumor-associated HA–HAase system and a preclinical proof-of-concept of
the safety and efficacy of sHA to control prostate cancer growth and progression. Cancer Res; 71(12); 4085–95.
�2011 AACR.

Introduction

Tumor-associated hyaluronic acid (HA) and hyaluronidase
(HAase) system is known to promote tumor growth and
metastasis (1). HA is a nonsulfated glycosaminoglycan that
is elevated in tumor tissues (2–7). Although HA synthesis is
mediated by HA synthases (HAS1, HAS2, and HAS3), cellular

effects of HA are mediated through HA receptors, CD44 and
RHAMM. HA–HA receptor interaction generates intracellular
signaling, which, in turn, promotes tumor growth, metastasis,
angiogenesis, trafficking of tumor-associated macrophages,
and chemoresistance (8–14). Our recent work shows that 4-
methylumbelliferone (4-MU), an HA synthesis inhibitor, has
antitumor activity in prostate cancer cells (15).

The other component in the tumor-associated HA–HAase
system is HYAL-1, a tumor cell-derived HAase. HYAL-1 at
levels expressed in tumor cells and tissues promotes tumor
growth, invasion, and angiogenesis in prostate and bladder
cancer models (16, 17). Furthermore, HA synthase expression
requires HYAL-1 to promote tumor growth and progression
(18, 19). HYAL-1 expression is potentially an independent
predictor of metastasis (3, 6, 20, 21). Although HYAL-1 is a
molecular determinant of cancer growth and progression, so
far no study has targeted it for cancer therapy.

Sulfated hyaluronic acid (sHA), generated by O-sulfation of
HA, was shown to inhibit both urinary and testicular HAases
60 years ago (22). We have shown that sHA polymers such
as sHA2.75, in which 75% of HA oligosaccharides contain
3-sulfate groups and 25% contain 2-sulfate groups, are
potent inhibitors of HYAL-1 activity (23). sHA2.75 inhibits
HAase activity through a mixed inhibition mechanism
(i.e., competitive þ uncompetitive) and it is 15-fold better
as an uncompetitive inhibitor than as a competitive inhibitor.
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sHA polymers have been shown to affect proliferation of
osteoblasts, gene expression in keratinocytes and astrocytes,
and adhesion and motility in fibroblasts (24–26). However,
antitumor activity of sHA compounds has not been explored.
In this study, we evaluated the antitumor activity of sHA and
the molecular mechanism associated with such activity.

Materials and Methods

Cell culture
Cell lines LNCaP, DU145, and RWPE-1 (immortalized nor-

mal adult prostate epithelial cells) were obtained from Amer-
ican Type Culture Collection (ATCC) and cultured in RPMI
1640 þ 10% FBS þ gentamicin. LAPC-4 cells kindly provided
by Dr. Charles Sawyer (Memorial Sloan Kettering Cancer
Center, New York, NY) were maintained in Iscove's medium
with 7.5% FBS and 1 nmol/L dihydrotestosterone. C4-2 and
C4-2B cells were obtained from Viromed Laboratories and
cultured in T-Medium þ 10% FBS þ gentamicin. LNCaP-AI
(LNAI) is a spontaneously derived androgen-independent
subline of LNCaP. LNAI cells express androgen receptor
(AR) and prostate-specific antigen (PSA) in a manner similar
to LNCaP (27). The presence of dihydrotestosterone did not
increase the growth of LNAI cells (Supplementary Fig. S1A).
Cell lines were authenticated by Genetica DNA Laboratories
Inc.; further in-house characterization is presented in Supple-
mentary Table S2. These authentications were carried out
during the course of this work.

Reagents
sHA was prepared from tributylamine salt of HA (molecular

weight 320–490 kDa; Genzyme Corp.; ref. 23). Antibodies,
constructs, and reagents used in this study are described in
Supplementary Information.

Cell proliferation and apoptosis
Prostate cancer cells [(1.5–2.0) � 104 cells/well] cultured in

growth medium were exposed to sHA (0–40 mg/mL) and
counted every 24 hours or after 48 to 72 hours. In some
experiments, HA12K or HA8K (average molecular weight 12
and 8 kDa, respectively), caspase-8 inhibitor IETD-CHO (5
mmol/L), or LY29400 was added to the wells at the time of sHA
addition. For apoptosis assay, cells were treated with sHA and
apoptosis was analyzed after 48 hours by using the Cell Death
ELISA Plus Kit. Apoptosis index was calculated as optical
density (OD)450 nm per 20,000 cells. LNAI cells were also
treated with sHA for 24 hours, and cell-cycle analysis was
conducted as described previously (16).

Motility and invasion assays
Matrigel invasion and motility assays were carried out

as described previously (15–17) except that sHA was
added in both chambers of the Transwell (see Supplementary
Information).

Immunoblot analyses, time course, and VEGF ELISA
Prostate cancer cells (40,000–50,000 cells/6-well plate) were

exposed to sHA (0–10 mg/mL) for 48 hours. For time course

experiments, 8- to 12-hour cultures of LNAI cells were exposed
to sHA (5 mg/mL) for 3, 6, 12, and 24 hours. In some wells, 50
mg/mL HA12K was added at the time of sHA addition. Cell
lysates (�20,000-cell equivalent) were immunoblotted using
specific antibodies; b-actin and PPIA4 [peptidylprolyl isomer-
ase A (cyclophilin A)] were used as loading controls. For VEGF
ELISA, serum-free conditioned media (16, 17) from control
and sHA-treated LNAI cells were assayed for VEGF levels by
using an ELISA kit.

HAase activity assay
Serum-free conditioned media of LNAI and DU145 cells

were subjected to HAase ELISA-like assay in the presence of
sHA (0–40 mg/mL). The HAase activity was normalized to
units � 10�4/106 cells, as described before (23).

Immunoprecipitation and phosphoinositide 3-kinase
activity assay

LNAI and DU145 cells treated with sHA were immunopre-
cipitated using a rabbit anti-p85 phosphoinositide 3-kinase
(PI3K) subunit antibody or rabbit IgG. The immunoprecipi-
tates were either subjected to immunoblotting using a mouse
anti-CD44, anti-RHAMM, or anti-p85 PI3K antibody or sub-
jected to PI3K activity assay (see Supplementary Information).

Transient transfection assays
LNAI andDU145 cells were transiently transfected withmyr-

HA-Akt1 plasmid (myr-Akt), pcDAN3.1-RHAMM, or pcDNA3.1-
CD44 (standard form, CD44s) expression plasmids or vector.
Alternatively, cellswere transfectedwith control siRNAorCD44
and/or RHAMM siRNA (50 nmol/L each; ref. 15). Twenty-four
hours following transfection, the cells were exposed to sHA and
analyzed after 48 hours for proliferation, apoptosis, and protein
and gene expression (see Supplementary Information). For
nuclear factor kB (NF&KAPPA;B) and PSA reporter assays, vector
and myr-Akt transfectants were transiently transfected with
pNFkB-Luc or PSAe1p/Luc plasmid (28).

Quantitative reverse transcription-PCR assays
Transient transfectants or prostate cancer cells treated with

sHA � HA12K were subjected to quantitative reverse tran-
scription-PCR (qRT-PCR), using the iQ SYBR Green Supermix
and the primers described in Supplementary Table S1. mRNA
levels were normalized to peptidylprolyl isomerase A (PPIA4
mRNA levels; ref. 15).

Tumor xenografts
LNAI cell suspension (2 � 106 cells/0.1 mL) was mixed 1:1

with Matrigel and implanted subcutaneously on the dorsal
flank of 5- to 6-month-old athymic mice. In the first experi-
ment, there were 4 mice in each group, vehicle (PBS), sHA 25
mg/kg, sHA 50 mg/kg. sHA was injected intraperitoneally
twice weekly. The treatment began on the day of injection.
Animals in the control group were euthanatized on day 29 and
on day 40 in the sHA 25 mg/kg group. In the sHA 50/kg group,
3 mice were euthanatized on day 40 and the remaining on
day 64 after stopping the treatment on day 50. Tumor volume
was measured twice weekly. In a second experiment, there
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were 5 animals in the control and 10 animals in the sHA 50
mg/kg group. In the sHA 50 mg/kg group, 5 animals were
euthanatized on day 42 and 5 mice were left untreated from
day 53 to day 70. Tumors or the Matrigel sac (if visible) was
fixed for immunohistochemistry [to localize microvessels or
terminal deoxynucleotidyl transferase–mediated dUTP nick
end labeling (TUNEL)-positive cells; refs. 15–17] and histo-
pathology (conducted at Charles River Laboratories). Micro-
vessel density (MVD) and TUNEL assays are described in the
Supplementary section. Serum chemistry analysis and histo-
pathologic evaluation of kidney, lung, and liver were con-
ducted by the Division of Comparative Pathology, University
of Miami.

Determination of serum sHA levels
Fourteen-week-old athymic mice (average weight �30 g)

were injected intraperitoneally with sHA (86.7 mg/kg). At var-
ious time intervals, mice were euthanatized and serum was
assayed for uronate levels (total glycosaminoglycan) by a mod-
ified uronic carbazole assay established by Bitter and M€uir (29).
Serum sulfated glycosaminoglycan levels were measured using
Farndale's dimethylmethylene blue assay (29). We have pre-
viously used these assays tomeasure urinary glycosaminoglycan
and sulfated glycosaminoglycan levels (29). We have previously
shown the detection of sHA by Farndale's assay (23).

Results

sHA inhibits HAase activity and cell proliferation in
prostate cancer cells
We have previously shown that LNCaP and DU145 cells

express 5- to 10-fold more HAase activity than PC3-ML cells
and that HYAL-1 is the only HAase expressed in prostate
cancer cells (7, 30). Furthermore, consistent with our previous

results, sHA inhibited the HAase activity secreted in the
conditioned media of LNAI and DU145 cells in a dose-depen-
dent manner (Supplementary Fig. S1B). sHA did not affect
HYAL-1 expression, as determined by qRT-PCR (data not
shown). As shown in Figure 1A, sHA inhibited the growth
of all prostate cancer cell lines but not of prostate epithelial
cells (RWPE-1). The IC50 value for LNCaP, LNAI, and LAPC-4
cells was 5 to 10 mg/mL, whereas for DU145 and C4-2 cells it
was 20 to 40 mg/mL. At IC50 or at higher values, the differences
in cell numbers between untreated and sHA-treated samples
were statistically significant (P � 0.005; unpaired t-test). Time
course experiment showed that sHA inhibited the growth of
LNAI cells at each time point (Supplementary Fig. S1C). To
determine whether the antiproliferative effect of sHA was due
to the inhibition of HAase activity, we treated LNAI and DU145
cells with sHA in the presence of angiogenic HA fragments,
which are generated because of the degradation of HA by
HAase. As shown in Figure 1B, in LNAI cells, HA12K partially
reversed the growth inhibition by sHA (64% inhibition at
5 mg/mL sHA; 36% inhibition at 5 mg/mL sHA þ HA12K).
This partial reversal was independent of the average mole-
cular weight of HA fragments, because HA8K showed a
similar effect on the growth inhibition by sHA in DU145 cells
(Fig. 1C).

sHA induces apoptosis in prostate cancer cells
To examine why sHA inhibits cell growth, we conducted

cell-cycle analysis. As shown in Supplementary Figure S1D,
sHA induced approximately 20% increase G0–G1 phase with a
corresponding decrease in G2–M and S-phases. However, the
cytotoxic effect of sHA was more likely mediated by its ability
to induce apoptotic cell death; at IC50, the increase in apop-
tosis was 200% in DU145 and C4-2 and 500% in LNAI
cells, respectively (Fig. 1D). Because apoptosis induction

Figure 1. Effect of sHA on cell
proliferation. A, cell-counting data
at 72 hours following treatment
with sHA. LNAI (B) and DU145 (C)
cells were treated with sHA þ 50
mg/mL of HA8K or HA12K and
counted after 72 hours. Data:
mean � SD. D, measurement of
apoptosis in cells treated with sHA
for 48 hours. Data: mean � SD.
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was substantial, we investigated its mechanism. In LNAI and
LAPC-4 cells, sHA induced the activation of proapoptotic
effectors (caspase-3, caspase-9, and caspase-8; 2- to 5-fold),
PARP cleavage and upregulation of death receptor signaling
complex proteins (Fas, Fas-L, DR4, DR5, FADD, and Bid
cleavage) in a dose-dependent manner (Fig. 2A). The upregu-
lation of proapoptotic effectors and death receptors was
observed as early as 6 to 12 hours after the exposure of LNAI
cells to sHA (Fig. 2B). In both LNAI and LAPC-4 cells, sHA also
downregulated Bcl-2 and phosphorylated Bad levels, without
significantly affecting Bcl-xL, Bax, and total Bad levels. Except
for Fas, DR4, phospho-Bad (p-Bad), and DR5 levels, the addi-
tion of HA12K during sHA incubation, either did not prevent
(caspase-3, caspase-8, and Bcl-2) or partially prevented
(PARP, Fas-L, and p15-Bid) the effect of sHA on apoptosis
effectors. When LNAI cells were incubated with sHA in the
presence of a cell-permeable caspase-8 inhibitor, IETD-CHO,
both growth inhibition and sHA-induced apoptosis were

significantly attenuated (Supplementary Fig. S1E), suggesting
the involvement of the extrinsic pathway in sHA-induced
apoptosis.

sHA inhibits chemotactic motility and invasion
Because HYAL-1 promotes tumor invasion and metastasis

(18–21), we investigated whether sHA inhibits chemotactic
motility and invasive potential of prostate cancer cells. As
shown in Figure 2C and D, sHA caused 75% or more
inhibition of chemotactic motility in both LNAI and
DU145 cells (P � 0.0001; unpaired t-test). HA12K caused
150% increase in the motility of LNAI cells and reduced the
sHA-induced inhibition of motility by 80%. Similarly, sHA
inhibited the invasive activity of LNAI and DU145 cells by
40% to 50% (P < 0.001; unpaired t-test); in LNAI cells, HA12K
reduced this inhibition by more than 80%. Therefore, sHA
inhibits chemotactic motility and invasion plausibly by
inhibiting HAase activity.
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Figure 2. Effect of sHA on
apoptosis, invasion, and
chemotactic motility. A, LNAI and
LAPC-4 cells were treated with
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48 hours and subjected to
immunoblot analyses for
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sHA inhibits Akt signaling
Because Bad is phosphorylated by Akt at Ser136 and sHA

downregulates phosphorylated Bad levels, we investigated
whether sHA inhibits Akt activation. As shown in Figure
3A, sHA downregulated phosphorylated Akt levels (>3-fold
decrease at 5–10 mg/mL) in both LNAI and LAPC-4 cells and
this decrease was partially prevented by HA12K. Akt activates
NFkB by phosphorylating IkB kinase a (IKKa), which, in turn,
phosphorylates IkB, targeting it for degradation. As shown in
Figure 3A, sHA decreased phosphorylated IkB levels in both
LNAI and LAPC-4 cells and the addition of HA12K prevented
this decrease. As expected sHA inhibited NFkB promoter
luciferase reporter activity (Fig. 3B). At 7.5 mg/mL, sHA caused
approximately 100% inhibition of NFkB reporter activity (35.6
� 10.6 vs. 0.67 � 0.32; P < 0.0001). NFkB activation induces
VEGF expression (31). As shown in Figure 3B, sHA decreased
VEGF levels secreted in the conditioned medium of LNAI cells
in a dose-dependent manner.
The PI3K/Akt signaling pathway regulates AR activity by

phosphorylating AR at Ser210/213 and Ser791/790 (32–34).
sHA inhibited AR phosphorylation on Ser210/213 in both
LNAI and LAPC-4 cells; however the addition of HA12K did
not prevent the decrease in phosphorylated AR levels (Fig. 3A).
The time course of the decrease in phosphorylated Akt, IkB,
and AR levels followed the same pattern; a decrease was

observed in as early as 3 hours and the levels decreased by
more than 80% after 12 hours of incubation (Fig. 2B).

sHA transcriptionally downregulates HA receptor and
VEGF expression

Angiogenic HA fragments induce CD44 expression and
cellular signaling through both CD44 and RHAMM (35–37).
sHA treatment downregulated RHAMM levels in a dose-
dependent manner in both LNAI and LAPC-4 cells
(Fig. 3A). RHAMM downregulation was observed within
6 hours of sHA treatment (Fig. 2B), and it was not effectively
prevented by HA12K (Fig. 3A). sHA also downregulated
RHAMM and VEGF mRNA levels by 3-fold and 100-fold,
respectively, in LNAI cells (Fig. 3B). Addition of HA12K
partially (RHAMM) or completely (VEGF) prevented the
observed decrease in these transcripts (Fig. 3C). In LAPC-4
cells, sHA downregulated RHAMM and VEGF transcript levels
by 18.5- and 25.7-fold, respectively (Fig. 3D).

With the exception of a derivative CL1, LNCaP cell line and
its derivatives (e.g., C4-2 and C4-2B), and LAPC-4 cells do not
express CD44 because of promoter hypermethylation (38–45).
We also did not observe CD44 expression [standard (CD44s)
and variant (CD44v) isoform(s)] in these cells (Supplementary
Table S2). Two publications have reported CD44 expression in
LNCaP and C4-2 cells (46, 47), including the expression of a
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CD44 variant, CD44-v9 (46). However, no PCR product was
amplified from LNCaP, LNAI, LAPC-4, C4-2, and C4-2B cells,
using the same PCR primer pair that was used to amplify
CD44-v9 (46, 48). A 632-base PCR product (CD44-epithelial
isoform) was amplified from PC3-ML and DU145 cells which
included exon v9 (exon 13), exon v10 (exon 14), and common
exons 15 to 17 (Supplementary Fig. S2A). The expression of
CD44s transcript was 26- and 49-fold higher than that of
CD44v transcript in DU145 and PC3-ML cells, respectively
(Supplementary Table S2). In DU145 cells, sHA caused 5.6- and
2.5-fold decrease in CD44 (data shown for CD44s) and
RHAMM mRNA levels, respectively, and a 4-fold decrease in
VEGF levels (Fig. 3D).

sHA inhibits PI3K activity and complex formation
between HA receptors and PI3K

sHA-mediated inhibition of Akt phosphorylation suggested
that sHA might be either inhibiting the activity of PI3K or
accelerating dephosphorylation of phosphatidylinositol-3,4,5-
trisphosphate (PIP3) by PTEN. Because sHA downregulated
Akt phosphorylation in PTEN-positive (DU145) and PTEN-
negative (LNAI and LAPC-4) cells, we investigated whether
sHA inhibited PI3K activity. As shown in Supplementary
Figure S2B and C, there was no difference in the amount of
PI3K (p85 subunit) immunoprecipitated from the control and
sHA-treated LNAI and DU145 cells; however, the PI3K activity
was significantly inhibited in sHA-treated samples. Further-
more, although both CD44 and RHAMM were coimmunopre-
cipitated with the p85 subunit in untreated samples, their
amount was significantly reduced in immunoprecipitates
from sHA-treated samples. Treatment of LNAI cells with
LY29400, a PI3K inhibitor, and sHA synergistically inhibited
cell growth (Supplementary Fig. S2D). The combination index
(CI) calculated by Chou–Talalay analysis (Calcusyn; Biosoft
Inc.) was 0.017, suggesting strong synergy. These results
showed that sHA decreased Akt signaling by inhibiting
PI3K activity.

Combined effect of HA receptor downregulation and
sHA treatment on prostate cancer cells

Because both HA and angiogenic HA fragments signal
through HA receptors, we examined whether downregulation
of CD44 and/or RHAMM mimics sHA effects. In DU145 cells,
sHA downregulated RHAMM and CD44 protein (Fig. 4A) and
mRNA expression (�6-fold; Supplementary Fig. S3). RHAMM
and CD44 siRNAs downregulated RHAMM and CD44 protein
expression, respectively (RHAMM, CD44, and CD44 þ
RHAMM panels, Fig. 4A). Addition of sHA did not further
decrease HA receptors levels plausibly because the siRNAs
decreased the levels of respective transcripts by more than 30-
fold (Supplementary Fig. S3). RHAMM protein and mRNA
were not detectable when LNAI cells were treated with both
sHA and RHAMM siRNAs (Fig. 4A and Supplementary Fig. S3).

In DU145 cells, downregulation of RHAMM or CD44
decreased phosphorylated Akt levels; however, sHA was more
effective. sHA and CD44þ RHAMM siRNAs caused more than
5-fold decrease in phosphorylated Akt levels. In LNAI cells,
both sHA and RHAMM siRNA caused more than 50% decrease

in phosphorylated Akt levels, and their combination caused
more than 80% decrease (Fig. 4A).

Both sHA and HA receptor siRNA treatments decreased cell
growth. However, the combination of sHA and CD44 þ
RHAMM siRNAs caused a 5.1-fold inhibition of cell growth
and a 4.4-fold increase in apoptosis in DU145 cells (Fig. 4B;
P < 0.0001; unpaired t-test). In LNAI cells, sHA and RHAMM
siRNA combination inhibited LNAI cell growth by 5-fold
and increased apoptosis by approximately 9-fold (Fig. 4C;
P < 0.0001; unpaired t-test). Chou–Talalay analysis showed
a synergistic effect of sHA and HA receptor siRNA treatments
on growth inhibition. The CI for each combination to inhibit
the growth of DU145 cells was as follows: sHA þ CD44 siRNA:
0.143; sHAþ RHAMM siRNA: 0.102; sHAþ (CD44þ RHAMM)
siRNA: 0.051. In LNAI cells, the CI for sHA þ RHAMM siRNA
was 0.082. In DU145 cells, HA receptor downregulation or sHA
caused a 5- to 10-fold decrease in VEGF mRNA levels and,
when both were combined, VEGF mRNA levels were unde-
tectable. In LNAI cells, both sHA and RHAMM siRNAs com-
pletely downregulated VEFG mRNA levels (Fig. 4D).
Conversely, overexpression of CD44, RHAMM, or CD44 þ
RHAMM in LNAI cells attenuated sHA-induced growth inhi-
bition; growth inhibition in transfectants at 5 mg/mL: vector:
64.4%; RHAMM: 20%; CD44: 12%; CD44 þ RHAMM: 20%
(Supplementary Fig. S4C). Similar results were observed with
respect to VEGF downregulation by sHA (data not shown).

Effect of constitutive Akt activation on sHA-induced
cellular effects

Because Akt activation was downregulated by both sHA and
HA receptor siRNA treatments, we investigated various effects
of sHA in LNAI cells transfected with myristoylated Akt
plasmid (myr-Akt). As shown in Figure 5A, myr-Akt transfec-
tion increased total Akt and phosphorylated Akt levels by
more than 10-fold. sHA treatment did not downregulate
phosphorylated Akt, phosphorylated IkB, phosphorylated
AR, and RHAMM levels in myr-Akt transfectants. myr-Akt
expression also attenuated the effect of sHA on cell prolifera-
tion, apoptosis, caspase-8 activation, and Fas-L upregulation
(Fig. 5A and B). myr-Akt expression caused a 4-fold increase in
NFkB reporter activity and prevented the sHA-mediated
decrease in NFkB transcriptional activity (Fig. 5C). Similarly,
myr-Akt reversed the effect of sHA on PSA promoter activity
and downregulation of VEGF transcript levels (Fig. 5C and D).

Effect of sHA on tumor growth and angiogenesis
Effect of sHA treatment on LNAI xenografts is shown in

Figure 6A. sHA significantly inhibited tumor growth at 25 and
50 mg/kg doses. On day 29, the average tumor volumes in the
vehicle group (1,191.1 � 299.5 mm3) were significantly higher
than in sHA 25 mg/kg (176.1 � 105 mm3) and sHA 50 mg/kg
(0.143 � 0.01 mm3); P < 0.001 (Tukey's multiple comparison
test). The tumors in the vehicle group were vascular and
hemorrhagic (Fig. 6B). The experiment was terminated on
day 40 in the sHA 25 mg/kg group (mean tumor volume¼ 385
� 263 mm3). Only one animal developed a palpable tumor by
day 40 in the sHA 50 mg/kg group; 8 of 14 animals were
euthanized after 39 to 42 days. In the remaining 6 animals,
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treatment was stopped for 1 animal on day 50 until day 63 and
this animal did not develop tumor. For 5 animals, treatment
was stopped from day 53 until day 70. As shown in Figure 6A,
the mean tumor volume at day 70 was 249 � 192 mm3; only 2
animals developed a tumor. There was no decrease in the
weight of sHA-treated animals and the animals gained weight
(Supplementary Fig. S4). Evaluation of fixed kidney, liver, and
lung tissues revealed no organ toxicity in sHA-treated animals
(Supplementary Fig. S5B), which was further confirmed by
serum chemistry analysis (Supplementary Table S3).
The serum half-life of sHA was determined by measuring

serum uronate (total glycosaminoglycan) and sulfated glyco-
saminoglycan levels. As shown in Figure 6C, following sHA
administration, there was an increase in both serum uronate

and sulfated glycosaminoglycan levels; peak levels were
achieved at 6 hours following intraperitoneal injection. The
serum half-life of sHA in circulation was approximately 24
hours.

Tumor histology showed that tumors in the vehicle group
formed larger masses and had clear evidence of the forma-
tion of fibrovascular stroma (Fig. 6B). Contrarily, the Matri-
gel sac removed from the injection site in the sHA 50 mg/kg
group (day 39), consisted primarily of groups of tumor cells
still embedded in the Matrigel without clear evidence of
neovascularization. Tumor cells in the sHA-treated group
were degenerate, some with small dark (pyknotic) or frag-
mented (karyorrhectic) nuclei. Tumor cells present in
the Matrigel sac in sHA 50 mg/kg group were apoptotic

Figure 4. Effect of sHA and CD44
þ RHAMM siRNA treatment on
LNAI and DU145 cells. DU145 and
LNAI cells were transfected with
CD44 and/or RHAMM siRNA
followed by sHA treatment. A,
immunoblot analysis of
transfectants for HA receptors,
Akt, and phosphorylated Akt.
phospho-Akt, p-Akt. 48 hours
following sHA treatment, the
DU145 (B) and LNAI (C)
transfectants were counted in
duplicate (left) or subjected to the
measurement of apoptosis in
triplicate (right). Data: mean � SD.
D, measurement of VEGF mRNA
levels by qRT-PCR. Data: mean �
SD.
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(�100% TUNEL-positive cells), whereas 5% to 10% of cells in
the vehicle-treated group were TUNEL positive (Fig. 6D). A
tumor specimen from the sHA-treated group had lower
MVD than the vehicle-treated group (Fig. 6D). MVD (mean
� SD) from sHA-treated group (1.8 � 1.5) was approximately
10-fold lower than that in the vehicle-treated group (22.5 �
6.5; P < 0.0001; unpaired t-test).

Discussion

Although HYAL-1 is a critical determinant of tumor growth
and metastasis and is an accurate prognostic marker for
cancer metastasis, no study so far has targeted HYAL-1 or
any other HAase for cancer therapy. The present study not
only targets HYAL-1 using a nontoxic HAase inhibitor, sHA,
but also delineates the molecular mechanism through which
the HA–HAase system might mediate tumor growth and
progression. sHA is not a specific inhibitor of HYAL-1 HAase
or for prostate cancer cells, rather it inhibits the activity of
different HAases by amixed inhibition mechanism. sHA is also
5-fold more potent in inhibiting HYAL-1 activity than the
activity of testicular HAase (7). We have previously shown that
unlike acidic HAases (e.g., HYAL-1), HAases, which are active
at pH � 5.0 (e.g., testicular), are more resistant to different
classes of HAase inhibitors (7). Because HYAL-1 and testicular
HAases share about 40% amino acid identity, only the com-
parison between the crystal structures of sHA bound to HYAL-
1 and to testicular HAase can reveal why sHA is more potent in

inhibiting HYAL-1 activity; the crystal structure of HYAL-1 has
not been deciphered.

The salient features of our study are as follows: (i) sHA
inhibits tumor growth mainly by inducing apoptosis via the
extrinsic pathway; (ii) sHA is effective in both androgen-
dependent and androgen-independent prostate cancer cells;
(iii) antitumor, antiangiogenic, and anti-invasive effects of
sHA are primarily mediated by the inhibition of PI3K/Akt
signaling and transcriptional downregulation of HA receptors;
(iv) plausibly, a feedback loop between Akt signaling and HA
receptors, controls prostate cancer cell growth, invasion/
motility, AR activity, and VEGF production. (v) in xenografts
models, sHA is highly effective in inhibiting tumor growth.
More than 60% of animals did not form tumors even when the
treatment was stopped after a certain period; (Vi) sHA is a
potent antiangiogenic agent and causes transcriptional down-
regulation of VEGF. With low toxicity, high efficacy, and an
easy-to-measure assay for circulating levels, sHA is potentially
a promising anticancer agent.

The tumor-associated HA–HAase system plausibly pro-
motes cell survival, proliferation, motility, and invasion and
upregulates HA receptor expression by stimulating the PI3K/
Akt pathway. By inhibiting the signaling complex between
PI3K and HA receptors, sHA inhibits Akt signaling and related
events (Supplementary Fig. S6). Because the overexpression of
myr-Akt restores the downregulation of HA receptors caused
by sHA, inhibition of Akt signaling seems to be responsible for
this downregulation. Furthermore, although HA receptor
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Figure 5. Effect of myr-Akt
expression on sHA-induced
effects in LNAI cells. LNAI cells
were transfected with either vector
or myr-Akt plasmid. Twenty-four
hours following transfection, cells
were treated with sHA for 48
hours. A, immunoblot analysis of
vector and myr-Akt transfectants.
phospho-Akt, p-Akt; phospho-
IkB, p-IkB; phospho-AR, p-AR. B,
cell proliferation and apoptosis:
following transfection and sHA
treatment the cells were counted
or subjected to apoptosis
measurement. C, NFkB reporter
and PSA promoter activities:
vector and myr-Akt transfectants
of LNAI cells were transfected with
pNFkb-Luc or PSAe1p/Luc
plasmids and treated with sHA.
The firefly luciferase and Renilla
luciferase activities were assayed
after 24 hours. D, measurement of
VEGFmRNA levels by qRT-PCR in
vector and myr-Akt transfectants
following sHA treatment.
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downregulation decreases phosphorylated Akt levels and the
overexpression of HA receptors attenuates sHA-mediated
inhibition of cell growth, it seems that there is a feedback
loop between PI3K/Akt activation and HA receptor expression
and the inhibition of this feedback loop is primarily respon-
sible for the antitumor effects of sHA.
Downregulation of HA receptors by sHA is of key impor-

tance in shutting down the HA–HAase system. This is
because, although the inhibition of HYAL-1 activity will
inhibit the generation of angiogenic HA fragment–mediated
signaling, in the absence of HAase activity, pericellular HA
still can generate intracellular signaling through HA recep-
tors. However, although sHA downregulates both HA recep-
tors, signaling through the HA–HAase system will be
inhibited regardless of the presence of pericellular HA.
Indeed, more sHA is needed to inhibit cell growth, invasion,
motility, and gene expression in DU145 cells, which express
both CD44 and RHAMM, than LNAI and LAPC-4 cells, which
express only RHAMM. Therefore, sHA plausibly affects 2
interrelated events—inhibition of HAase activity and down-
regulation of HA receptors.
sHA causes inhibition of Akt phosphorylation as early as 3

hours and it precedes the downregulation of HA receptors and
AR phosphorylation. Overexpression of myr-Akt reverses the
biological effects of sHA including the inhibition of NFkB

reporter activity, AR phosphorylation, and PSA promoter
activity. This suggests that downregulation of PI3K/Akt sig-
naling by sHA is the initial event that triggers the inhibition of
the feedback loop between Akt and HA receptors leading to
induction of apoptosis (49) and the inhibition of VEGF expres-
sion, cell motility, and invasion. Inhibition of PI3K/Akt as the
initial event may also be the reason why we observed a
substantial increase in apoptosis but amodest cell-cycle arrest
in sHA-treated cells; the latter would be expected because of
the downregulation of RHAMM by sHA (12).

The present study shows that in prostate cancer models,
sHA has potent antitumor activity with desirable toxicity
profile and ease of detection in serum. In fact, more than
60% of the animals remained tumor free even when the
treatment was terminated after a certain period and there
was no detectable treatment-related toxicity. Serum-sulfated
and total glycosaminoglycan (uronate) levels provide an inex-
pensive surrogate marker for determining sHA levels in cir-
culation. In addition to prostate cancer, this study will have
a broad impact on cancer biology, therapeutics, and the
mechanistic understanding of the tumor-associated HA–
HAase system; specifically from the standpoint of tumors that
express HYAL-1 (e.g., bladder, breast, and prostate) and the
HA receptor/Akt-dependent pathways activated in these
tumors.

Figure 6. Effect of sHA on LNAI
tumor xenografts. A, athymic mice
were implanted subcutaneously
with LNAI cells and treated twice
weekly with vehicle or sHA (25 or
50 mg/kg). In the sHA 50 mg/kg
group, for 5 mice, treatment was
stopped from day 53 to day 70 and
for 1mouse from day 50 to day 63.
B, tumor photographs at day 29
for 3 treatment groups. C, serum
total (uronate) and sulfated
glycosaminoglycan (GAG) level
measurement. Data: mean � SD.
D, hematoxylin–eosin (H&E)
staining, TUNEL assay, and MVD
determination by
immunohistochemistry on
paraffin-fixed specimens (vehicle,
day 29; sHA 50 mg/kg 40 days).
For all panels, magnification is
400�. In the H&E-stained sHA 50
mg/kg specimen, arrows show
Matrigel fibers and nuclear debris.
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