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Abstract Enterprises and cloud service providers face dramatic increase in the amount of data

stored in private and public clouds. Thus, data storage costs are growing hastily because they

use only one single high-performance storage tier for storing all cloud data. There’s considerable

potential to reduce cloud costs by classifying data into active (hot) and inactive (cold). In the

main-memory databases research, recent works focus on approaches to identify hot/cold data.

Most of these approaches track tuple accesses to identify hot/cold tuples. In contrast, we introduce

a novel Hybrid Filtering Approach (HFA) that tracks both tuples and columns accesses in

main-memory databases. Our objective is to enhance the performance in terms of three dimensions:

storage space, query elapsed time and CPU time. In order to validate the effectiveness of our

approach, we realized its concrete implementation on Hekaton, a SQL’s server memory-

optimized engine using the well-known TPC-H benchmark. Experimental results show that the

proposed HFA outperforms Hekaton approach in respect of all performance dimensions. In

specific, HFA reduces the storage space by average of 44–96%, reduces the query elapsed time

by average of 25–93% and reduces the CPU time by average of 31–97% compared to the traditional

database approach.
� 2015 Production and hosting by Elsevier B.V. on behalf of Faculty of Computers and Information,

Cairo University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.

org/licenses/by-nc-nd/4.0/).
1. Introduction

Main-memory database (MMDB) is a database management

system that primarily relies on main-memory for computer
data storage. It is contrasted with database management sys-
tems which employ a disk storage mechanism. Main-memory

databases are faster than disk-based databases since the inter-
nal optimization algorithms are simpler and execute fewer
CPU instructions. Accessing data in memory eliminates seek
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time when querying the data, which provides faster and more
predictable performance than disk [1].

Recent evolution in main-memory sizes has prompted huge

increases in the prevalence of database systems that keep the
entire database in memory. Nonetheless, main-memory is still
a scarce resource and expensive compared to disk [2]. A major

goal of recent research works is to improve main-memory stor-
age optimization. The more free memory the larger systems to
be stored in the database, which improves the performance

and the cost efficiency. The objective is to separate the data
into active (hot) and inactive (cold) data. The hot data will
remain in main-memory and the cold ones will be moved to
a cheaper cold store [3]. The main difference in the existing

techniques is the level of granularity in which the data is
accessed and classified as hot or cold; which in some databases
is at the tuple-level and in others at page-level.

In the same context, cloud storage becomes more expensive
because charges of ‘‘GB transferred” over the network vary
with the amount of data transferred each month, conceivably

with amazing and capricious variations. Moreover, extra hid-
den fees, such as connecting fees, maintenance charges, and
data access charges can add up quickly [4]. Therefore, the con-

cept of multi-temperature cloud storage (hot, cold) was devel-
oped to improve the economics of storing the enormous
amounts of data. Frequently accessed (hot) data is available
on fast, high performance storage, while inactive (cold) data

is archived onto lower cost storage [5].
To the best of the author’s knowledge, this is the first initia-

tive to propose a Hybrid Filtering Approach (HFA) that hor-

izontally filters the database by hot tuples and then, vertically
filters the database by defining hot attributes, in the aspect of
storage optimization (reducing storage space) in main-memory

cloud database. Moreover, we prove its efficiency compared to
the traditional approach using standard benchmark.

The contributions of this paper can be summarized as

follow:

1. Comprehensive analysis of existing main-memory data-
bases that focus on hot/cold data management.

2. Introduce the proposed approach and explain it through a
detailed case study.

3. Evaluate the effectiveness of the proposed approach using a

standard benchmark.

The remaining of this paper is organized as follow.

Section 2 surveys the recent related work. Section 3 introduces
the proposed hybrid filtering approach. Section 4 presents a
detailed case study to illustrate the workflow of the proposed
approach. Section 5 reports the experimental evaluation of

the proposed approach. Finally, Section 6 concludes the paper.
2. Related work

Recent development in hardware has led to rapidly dropping
market prices of main-memory in the past years. This develop-
ment made it economically feasible to use the main-memory as

the primary data store of DBMS, which is the main character-
istic of a main-memory DBMS. Recent research works focus
on main-memory DBMS storage.

Commercial systems include Oracle’s Times Ten [6], IBM’s
solidDB [7], and VoltDB [8]. On the other hand, research
systems are HYRISE [9], H-Store [10], HyPer [11] and
MonetDB [12]. These systems are suitable for the databases
that are smaller than the amount of the physical available

memory. If memory is exceeded, then it will lead to perfor-
mance problems. This problem of capacity limitation of
main-memory DBMS has been addressed by a number of

recent works.
SAP HANA [13] is a columnar in-memory DBMS suitable

for both OLTP and Online Analytical Processing (OLAP)

workloads. It offers an approach to handle data aging [14].
Hot data refers to columns that are loaded into
main-memory and can be accessed by the DBMS. Cold data
is not loaded into main memory but is stored in the disk-

based persistence layer. It uses the Least Recently Used
(LRU) technique to distinguish between hot and cold data.

Oracle Database 12c In-Memory Option [15] is based on

dual-format data store, suitable for use by response-time crit-
ical OLTP applications as well as analytical applications for
real-time decision-making. Oracle in-memory column store

uses LRU technique to identify hot/cold data.
HyPer is a main-memory hybrid OLTP and OLAP system

[11]. It has a compacting-based approach used to handle hot

and cold data [16]. In this approach, the authors use the capa-
bilities of modern server systems to track data accesses. The
data stored in a columnar layout is partitioned horizontally
and each partition is categorized by its access frequency.

Data in the (rarely accessed) frozen category is still kept in
memory but compressed and stored in huge pages to better uti-
lize main memory. HyPer performs hot/cold data classification

at the Virtual Machine (VM) page level.
In [17], authors proposed a simple and low-overhead tech-

nique that enables main-memory database to efficiently

migrate cold data to secondary storage by relying on the
Operating System (OS)’s virtual memory paging mechanism.
Hot pages are pinned in memory while, cold pages are moved

out by the OS to cold storage.
In [18], the authors implemented hot and cold separation in

the main-memory database H-Store. The authors call this
approach ‘‘Anti-Caching” to underline that hot data is no

longer cached in main-memory but cold data is evicted to sec-
ondary storage. To trace accesses to tuples, tuples are stored in
a LRU chain per table.

A comparable approach is presented in Hekaton [19], a
SQL server’s memory-optimized OTLP engine that manages
hot and cold tuples. In Hekaton, the primary copy of the data-

base is entirely stored in main-memory. Hot tuples remain in
main-memory while cold ones are moved to cold secondary
storage [20].

Table 1 summarizes the comparison between hot/cold data

management approaches in main-memory databases. We
observe that SAP HANA [14] vertically filters the data in a
columnar layout, which is a different context than the row lay-

out employed in our HFA approach. Oracle 12c dual-format
[15] stores the primary copy of the data on disk, and then uses
the concept of hybrid filtering in its approach. However, it

applies HF and VF on disk, and then moves these hot data
into in-memory columnar store. In contrast, we apply hybrid
filtering approach on data resident in main-memory. HyPer

[16,17] perform cold/hot data classification at the VM page
level, which is different from our scope. It is proved by [18]
that it is best to make the classification at the same level
of granularity that the data is accessed, which is at the



Table 1 Hot/cold data management approaches in main-memory databases.

Main-memory database

approach

Main-memory

physical layout

Hot/cold data

classification

Horizontal Filtering (HF)

by hot tuple

Vertical Filtering (VF) by

hot column

Hybrid

filtering

SAP HANA [14] Columnar Hot columns NO YES NO

Oracle 12c dual-format

[15]

Both Hot tuples & hot

columns

YES YES YES

HyPer [16] Both Hot pages YES YES YES

Stoica et al. [17] Row Hot pages YES NO NO

Anti-caching [18] Row Hot tuples YES NO NO

Hekaton [19] Row Hot tuples YES NO NO

Proposed HFA Row Hot tuples & hot

columns

YES YES YES
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tuple-level. Compared to Anti-Caching [18], it uses the LRU
technique to horizontally filter the database, while our

approach uses the ‘‘datetime” key filtering method. Finally,
Hekaton [19] is the work closest to our approach as it uses
the same horizontal filtering methodology by hot tuples which

is using the application pattern ‘‘datetime” key to split the data
[21]. Therefore, we chose to build on their work and extend
their architecture in order to implement our HFA.

Our novel Hybrid Filtering Approach (HFA) is based on a
row store main-memory database. Our primary copy of data is
entirely stored in main-memory. First, HFA horizontally fil-
ters the data by hot tuples. Then, it vertically filters the data

by hot columns.
Figure 1 Proposed hybr
3. Proposed hybrid filtering approach

Our proposed approach is composed of two phases as shown

in Fig. 1. In the first phase, the offline analysis, we classify
the hot and cold attributes. Hot attributes will remain in main
memory and cold ones will be moved to a cheaper secondary

storage. In the second phase, the online analysis, the system
interacts with users. The user enters a query and receives a
response to his query. In this paper, we focus on the offline
analysis phase. Comprehensive details on the online analysis

phase and query profiling process will be addressed in a sepa-
rate publication.
id filtering approach.



Table 4 Query log file.

Q_ID Table name Attributes

101 Items Item_ID, Brand, Description, Price

101 Customers Name, Phone

102 Customers Name, Phone

102 Items Item_ID, Brand, Description, Price

102 Employee Name, Phone

103 Items Item_ID, Brand, Description

103 Customers Name

104 Items Item_ID, Brand, Price, Cost

104 Customers Name
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3.1. Phase1: offline analysis

The offline phase is composed of three modules. Periodically,
we run the offline analysis to define the hot and cold attributes
in the log files and update the hot/cold attributes list. The

duration is predefined by the system administration according
to one of two factors either by time (i.e. number of months) or
by database workload (i.e. number of queries).

3.1.1. Horizontal filtering

Similar to recent research work, the primary copy of database
resides in main-memory and is horizontally filtered at tuple-

level of granularity to hot and cold tuples. The hot tuples will
remain in main-memory and the cold ones will be migrated to
a cold secondary storage. In HFA, we use a horizontal filtering
approach that depends mainly on the application business

logic. Thus, we use the filtering pattern ‘‘datetime” key to split
the data to hot/cold tuples [21].

3.1.2. Frequent attributes identification

In this module, we developed a novel technique to identify the
hot/cold attributes. We analyze the queries stored in the log
files to compute the frequency of occurrence for each attribute.

The hot (most frequent) attributes are identified as the attri-
butes that appear more than or equal to a pre-specified thresh-
old. The results are stored to hot-attributes list. On the other

hand, the hot attribute will be cold if its frequency is less than
Table 2 Items table in main-memory.

Item_ID Brand Description Price Cost

11 Nabisco Cookies 2.25 1

12 Morries Cigarettes 5 3

13 Kraft Cheese 6 4

14 Kellog Cereal 1 0.5

15 Quaker Oatmeal 2.5 1

16 Nabisco Crackers 4 2

17 Brand Spagetti 0.99 0.5

18 Monte Candy 0.5 0.1

19 Hershy Candy 3.99 2

20 Kleenex Tissues 2.99 1

Table 3 (a) Hot tuples in main-memory (b) Cold tuples on disk.

Item_ID Brand Description Price Cost

(a)

11 Nabisco Cookies 2.25 1

12 Morries Cigarettes 5 3

13 Kraft Cheese 6 4

14 Kellog Cereal 1 0.5

15 Quaker Oatmeal 2.5 1

(b)

16 Nabisco Crackers 4 2

17 Brand Spagetti 0.99 0.5

18 Monte Candy 0.5 0.1

19 Hershy Candy 3.99 2

20 Kleenex Tissues 2.99 1
the pre-specified threshold. Cold attributes will be stored to
cold-attributes list.

3.1.3. Vertical filtering

Vertical filtering of a table T splits it into two or more tables
(sub-tables), each of which contains a subset of the attributes
in T. Since many queries access only a small subset of the attri-

butes in a table, vertical filtering can reduce the amount of data
that needs to be scanned to answer the query. According to the
hot-attributes list, the database in main-memory is vertically

filtered at attribute-level of granularity to hot and cold attri-
butes. The hot attributes will remain in main-memory, while
the cold ones will be migrated to a cold secondary storage.
Size UPC Weight Taxable

20 � 2 � 18 124,576 23.5 1

7 � 7 � 7 235,467 78 0

6 � 10 � 2 365,421 0.11 0

9 � 9 � 9 875,465 15 1

3 � 3 � 3 654,123 1.3 0

4 � 4 � 4 412,678 2.4 0

2 � 2 � 2 127,896 3.4 0

2 � 2 � 2 345,346 6.3 1

4 � 13 � 5 112,367 50.2 0

2 � 16 � 3 224,643 32 0

Size UPC Weight Taxable

20 � 2 � 18 124,576 23.5 1

7 � 7 � 7 235,467 78 0

6 � 10 � 2 365,421 0.11 0

9 � 9 � 9 875,465 15 1

3 � 3 � 3 654,123 1.3 0

4 � 4 � 4 412,678 2.4 0

2 � 2 � 2 127,896 3.4 0

2 � 2 � 2 345,346 6.3 1

4 � 13 � 5 112,367 50.2 0

2 � 16 � 3 224,643 32 0



Table 5 Attributes-frequency for Items table.

Attribute Frequency

Item_ID 4

Brand 4

Description 3

Cost 2

Price 3

Weight 0

Shape 0

Taxable 0

Size 0

UPC 0
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Algorithm 1: Query Execution

Input: User Query Q

Output: Query Result R

1. Begin

2. if all attributes in Q are cold attributes then

3. Return a view of R from cold storage

4. Increment attributes counters

5. else if all attributes in Q are hot attributes then

6. Return a view of R from hot storage

7. else

8. Return a view of R from both hot and

9. cold storage

10. end if

11. for each attribute in Q

12. if counter >= threshold then

13. Change cold attribute into hot attribute

14. Update hot and cold attributes lists

15. else

16. Change hot attribute into cold attribute

17. Update hot and cold attributes lists

18. end if

19. end for

20. Return R to User

21. End
3.2. Phase 2: online analysis

The online phase is composed of three modules.

1. Query parsing: This module receives the user query and
parses it to identify the requested tables and attributes.

2. Query storage: This module stores the user query into the
Log files.

3. Query execution: This module executes the query and
returns the results to the user. The algorithm of the query

execution is demonstrated using pseudo code in
Algorithm 1.

4. Case study

In this section, a detailed case study is presented in order to

demonstrate the proposed HFA workflow. Table 2 shows the
Items table which consists of 9 attributes.
4.1. Phase1: offline analysis

1. Horizontal filtering: Items table is horizontally filtered to

hot tuples (remain in main-memory) and cold tuples
(moved to disk) as shown in Table 3.
2. Frequent attributes identification: Identify hot/cold attri-

butes in the database, which involves two main steps.

Step 1: Scan the query log file shown in Table 4 in order to

find the most frequent attributes in Items table.
Step 2: Employ a pre-specified attribute frequency thresh-
old (h) = 3 on the attribute-frequency table shown in
Table 5. Thus, the hot-attributes list = [Item_ID, Brand,

Description, Price] and the cold-attributes list = [Cost,
Weight, Shape, Taxable, Size, UPC].

3. Vertical filtering: Hot tuples from Table 3(a) are verti-
cally filtered by the hot-attributes list. Consequently, the
data set for Items table in main-memory will have only

hot attributes of hot tuples as shown in Table 6.

4.2. Phase 2: online analysis

Receive the user query and parse it to identify the requested
tables and attributes.

Query 105:

Select Cost, Weight, Taxable
From Items;

After parsing the query, it is noticed that it fits the first case
as all query attributes are cold attributes (Cost, Weight, and

Taxable) (Lines 2-4 in pseudo code). We increment these attri-
butes’ counters, and then return a view of the query attributes
from cold storage (disk) using the following T-SQL code

sample.
First, we create a view called V1

CREATE VIEW V1

AS SELECT Cost, Weight, Taxable
FROM dbo.Cold_Table;
GO

Second, we run the view to verify its contents

SELECT * FROM V1;
GO

These attributes’ frequencies will be incremented such as

(Cost = 3, Weight = 1, Taxable = 1). The Cost attribute fre-
quency is equal to the threshold (Lines 11–14) then it’ll be
added to hot-attributes list. Thus, the updated hot-attributes

list = [Item_ID, Brand, Description, Price, Cost] and Cold-
attributes list = [Weight, Shape, Taxable, Size, UPC].
Finally, the query is stored to the Log files.

5. Experimental evaluation of HFA approach

In order to systematically validate the effectiveness of our

HFA approach, we have implemented it and the Hekaton



Figure 2 Tables schema.

Table 6 Vertical filtering of hot tuples in main-memory.

Item_ID Brand Description Price

11 Nabisco Cookies 2.25

12 Morries Cigarettes 5

13 Kraft Cheese 6

14 Kellog Cereal 1

15 Quaker Oatmeal 2.5
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approach. In this section, we present details of the experiment
setup, the workload, the experiment scenario, and finally the

performance study is reported.

5.1. Experiment setup

Experiments run using the following resources:

Hardware platform: Intel � Core TM i7 CPU (@ 2.60 GHZ)

with 12 GB of RAM running on 64-bit Windows 8.1.
Software tools: Microsoft Server 2014 Enterprise Edition as

a software tool to build our in-memory database and tables

and run the queries. In addition, we use client statistics tool
to monitor and compare the performance of our queries.

5.2. Workload

For all experiments, we use the well-known TPC-H [22] bench-
mark, which has been used in reputable research works
[11,13,15]. The workload consists of two tables LINEITEM

and ORDERS. We populated the tables with data by the offi-
cial TPC-H toolkit, with scale factor SF = 1. LINEITEM
table has 6,001,215 rows and the ORDERS table has

1,500,000 rows. Fig. 2 shows the tables schema. The
LINEITEM table consists of 16 columns and the ORDERS
table consists of 9 columns.

5.3. Experiment scenario

We base all experiments on a variant of the following query:

Select hotcol1, hotcol2. . .
From table

Where hotcol operator x;

The value of x is any valid value according to the data type

of hotcol. The objective of the predicate in the where clause is
to identify and retrieve the hot rows (e.g. OrderDate). The
select clause vertically filters the table by the hot columns.

The HFA workflow can be summarized as follow:

� We create two memory-optimized tables (ORDERS and

LINEITEM) and store them entirely in the main-memory.
� We horizontally filter both tables by hot rows using differ-
ent cases of hot rows: 25%, 50% and 75% of the original
table.

� We vertically filter each horizontal table by hot columns
using four different cases of hot columns. For ORDERS
table: 2, 4, 6 and 8 hot columns. For LINEITEM table:

3, 7, 11 and 15 hot columns.
5.4. Performance study

In this section, we experimentally evaluate the effectiveness of

our HFA compared to Hekaton in terms of three performance
dimensions: storage space, query elapsed time and CPU time.
We have used different cases of hot rows 25–75% using step of
25 employing different cases of hot columns. In ORDERS

table: HFA-2, HFA-4, HFA-6 and HFA-8 while in
LINEITEM table: HFA-3, HFA-7, HFA-11 and HFA-15.

5.4.1. Storage space dimension

In this experiment, we investigate the storage space require-
ments of the proposed HFA compared to Hekaton in main-
memory database. As shown in Fig. 3, results show that the

storage space of all approaches increase with increasing num-
ber of hot rows. It is obvious that our HFA outperforms
Hekaton in all cases of vertical filtering.

It can be noted that in Fig. 3(a), the best storage require-
ment for Hekaton is worse than the worst storage requirement
for the proposed HFA approach using HFA-2 and HFA-4 hot

columns. In Fig. 3(b), the best storage value for Hekaton is
worse than the worst storage requirement for the proposed
HFA approach using HFA-3 and HFA-7 hot columns.

As shown in Fig. 4(a), results show that our HFA outper-

forms Hekaton. The HFA approach has storage improvement
on average 44–96% and Hekaton approach on average 25–
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Figure 3 Storage space requirements (a) for ORDERS table (b) for LINEITEM table.
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76% compared to the original ORDERS table. In Fig. 4(b),
the HFA approach has storage improvement on average 47–
94% and Hekaton approach on average 25–75% compared
to the original LINEITEM table.

5.4.2. Query elapsed time dimension

In this experiment, we investigate the query elapsed time of the

proposed HFA compared to Hekaton in main-memory data-
base. As shown in Fig. 5, results show that the query elapsed
time of all approaches increase with increasing number of
hot rows. It is obvious that our HFA outperforms Hekaton

in all cases of vertical filtering except in the case of HFA-8
hot columns in the case of hot rows less than 50%.
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Figure 5 Query elapsed time (a) for ORD
From Fig. 5(a), it can be noted that the best elapsed time
value for Hekaton is worse than the best value for our pro-
posed HFA approach using HFA-2, HFA-4 and HFA-6. In
Fig. 5(b), the best elapsed time value for Hekaton is worse than

the best value for our proposed HFA approach using HFA-3,
HFA-7 and HFA-11 hot columns.

As shown in Fig. 6(a), results show that our HFA outper-

forms Hekaton. The HFA approach has elapsed time improve-
ment on average 25–90% and Hekaton approach on average
12–74% compared to the original ORDERS table. In Fig. 6

(b), the HFA approach has elapsed time improvement on aver-
age 45–93% and Hekaton approach on average 40–81% com-
pared to the original LINEITEM table.
(b) 

0

25

50

75

100

125

25% 50% 75%

El
ap

se
d 

Ti
m

e 
(S

ec
)

Hot Rows (%)

Hekaton HFA-3 cols HFA-7 cols

HFA-11 cols HFA-15 cols

ERS table (b) for LINEITEM table.



(a) (b) 

0

0.5

1

1.5

2

2.5

CP
U

 T
im

e 
(S

ec
)

Hot Rows (%)

Hekaton HFA-2 cols HFA-4 cols
HFA-6 cols HFA-8 cols

0

2.5

5

7.5

10

12.5

25% 50% 75% 25% 50% 75%

CP
U

 T
im

e 
(S

ec
)

Hot Rows (%)

Hekaton HFA-3 cols HFA-7 cols

HFA-11 cols HFA-15 cols

Figure 7 CPU time (a) for ORDERS table (b) for LINEITEM table.

(a) (b) 

0%

20%

40%

60%

80%

100%

120%

CP
U

 T
im

e 
Im

p.
 (%

)

Hot Rows (%)

Hekaton HFA-2 cols HFA-4 cols
HFA-6 cols HFA-8 cols

0%

20%

40%

60%

80%

100%

120%

25% 50% 75% 25% 50% 75%

CP
U

 T
im

e 
 Im

p.
 (%

)

Hot Rows (%)

Hekaton HFA-3 cols HFA-7 cols

HFA-11 cols HFA-15 cols

Figure 8 CPU time improvements (a) for ORDERS table (b) for LINEITEM table.

(a) (b) 

0%

20%

40%

60%

80%

100%

El
ap

se
d 

Ti
m

e 
Im

p.
 (%

)

Hot Rows (%)

Hekaton HFA-2 cols HFA-4 cols
HFA-6 cols HFA-8 cols

0%

20%

40%

60%

80%

100%

25% 50% 75% 25% 50% 75%

El
ap

se
d 

Ti
m

e 
 Im

p.
 (%

)

Hot Rows (%)

Hekaton HFA-3 cols HFA-7 cols
HFA-11 cols HFA-15 cols

Figure 6 Elapsed time improvements (a) for ORDERS table (b) for LINEITEM table.

336 G.M. Afify et al.
5.4.3. CPU time dimension

In this experiment, we investigate the CPU time of the pro-

posed HFA compared to Hekaton in main-memory database.
As shown in Fig. 7, results show that the CPU time of all
approaches increase with increasing number of hot rows. It

is obvious that our HFA outperforms Hekaton in all cases
of vertical filtering except in the case of HFA-15 hot columns
in the case of hot rows less than 50%.

From Fig. 7(a), it can be noted that the best CPU time
value for Hekaton is worse than the best value for our pro-
posed HFA approach using HFA-2, HFA-4 and HFA-6. In
Fig. 7(b), the best CPU time value for Hekaton is worse than
the best value for our proposed HFA approach using HFA-3,
HFA-7 and HFA-11 hot columns.

As shown in Fig. 8(a), results show that our HFA out-
performs Hekaton. The HFA approach has CPU time
improvement on average 31–97% and Hekaton approach

on average 12–62% compared to the original ORDERS
table. In Fig. 8(b), the HFA approach has CPU time
improvement on average 60–96% and Hekaton approach

on average 41–83% compared to the original LINEITEM
table.
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6. Conclusion

Due to the budgetary challenges of storing vast amounts of
data in the cloud, identifying hot/cold storage is emerging as

a significant trend. To contribute to this research, we investi-
gated the optimization of the storage space requirements with
the aim of reducing the cost in main-memory cloud databases.

We conducted a comprehensive analysis of existing main-
memory databases that focus on hot/cold data management.
We proposed a novel Hybrid Filtering Approach (HFA) that
filters the tables in the main-memory both horizontally by

rows and then vertically by columns. We demonstrated its
workflow through a detailed case study. We evaluated the
effectiveness of HFA using the standard TPC-H benchmark.

Experimental evaluation proved that the proposed HFA
approach is superior to Hekaton in terms of all performance
metrics in main-memory row store database. The proposed

HFA reduces the storage space by average of 44–96%, reduces
the query elapsed time by average of 25–93% and reduces the
CPU time by average of 31–97% compared to the traditional

database approach.
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