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Abstract
Non-invasive molecular imaging techniques are accruing more interest in the last decades. Several radiolabelling elements

have been FDA-approved and are currently used to characterize tumors. In this study, the DNA intercalating agent

doxorubicin was radiolabelled with 125I. Several parameters for the radiolabelling reaction were investigated and opti-

mized. A maximum yield of 94 ± 0.3% was reached after reacting 20 lg of doxorubicin with 200 lg Chloramine-T at pH

5 for 30 min. The in vivo stability of 125I-doxorubicin is validated by the low propensity for thyroid uptake in mice. The

preclinical T/NT ratio was approximately 6.4 at 30 min. Docking and molecular dynamics confirmed that the radiolabelling

of doxorubicin did not affect (or slightly improved its binding to DNA). Overall, 125I-doxorubicin was demonstrated to be a

promising non-invasive probe for solid tumor imaging.
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Introduction

Medical imaging has evolved in the last decades to be an

important tool in cancer visualization and characterization

[1]. Imaging at the molecular level is getting more interest

due to advantages it offers as compared to conventional

anatomical imaging techniques like computed x-ray

tomography and magnetic resonance imaging [2]. With

molecular imaging, the expression and activity of some

important macromolecules involved in protein progression,

like kinases and proteases, can be efficiently monitored [3].

In addition, certain key biological processes including

apoptosis and angiogenesis can be traced to study cancer

progression. Molecular imaging techniques also allow for

the early detection of cancer and increase the associated

survival rate [4]. Several techniques serve this purpose of

early detection, including fluorescent-based imaging

probes [5–7] and magnetic nanoparticles [8]. Single photon

emission computed tomography (SPECT) and positron

emission tomography (PET) imaging are FDA-approved

techniques that expand the molecular imaging toolbox [9].

Radiolabelling elements include 99mTc, [10–14] 18F,

[15, 16] and 123I [17, 18]. [18F]fluorodeoxyglucose (FDG)

is a widely used PET agent that has been approved for

staging of many cancers [9, 19, 20]. Its selectivity stems

from its resemblance to glucose, which is naturally

consumed at higher rates by cancer cells [19]. However,

the short half life (t1/2 = 1.83 h) and high cost of 18F limit

its wide clinical application. The ability of 18FDG to

differentiate between a tumor and inflammation repre-

sents its main drawback as a tumor staging agent [21, 22].

Besides, 18FDG can give false positive results as it

showed high uptake in human and experimental inflam-

matory lesions [23–30]. In the last few decades, scientists

investigated many radiopharmaceuticals based on radio-

iodine (123/131I) or 99mTc as new models of tumor imag-

ing-agents. Many new tumor imaging agents were

evaluated in the last decade for their ability to target

tumors selectively including agents such as radioiodi-

nated anastrozole, radioiodinated epirubicin, 99mTc-mer-

openem, 99mTc-sunitinib, 99mTc-PyDA, 99mTc-BnAO-NI,

[99mTc(CO)3(IDA–PEG3–CB)]
-, 99mTc(CO)3–labeled

chlorambucil analog, 99mTc-nitridepyrazolo[1,5-a]pyrim-

idine, 99mTc-DETA, 99mTc-TETA, 99mTc-TEPA, 99mTc-

citro-folate and 99mTc-gemcitabine [3, 10, 12, 13, 31–42].
125I has a desirable half-life time (t1/2 = 59.4 days) and

can be used as high specific activity iodide without add-

ing carrier iodine.

Doxorubicin, Fig. 1, has been approved as a

chemotherapeutic agent since the 1970s. It has a broad

spectrum of activity against various malignancies, includ-

ing non-Hodgkin’s lymphoma, breast carcinoma, Kaposi
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sarcoma, and acute lymphocytic leukemia. It is also

available in pegylated forms, liposomes and frequently

loaded on nano-particles [43–49]. Its mechanism of action

involves intercalation between DNA bases and inhibition

of the topoisomerase II enzyme [43–46]. As evident in

crystal structures, the planar portion of doxorubicin inter-

calates between two DNA bases while further interactions

(mainly H-bonds) between the six-membered daunosamine

sugar and neighbouring DNA bases serve to stabilize the

complex [47, 48]. The interest of using doxorubicin in

imaging was based on its fluorescent properties. Recently,

imaging of doxorubicin with multiphoton fluorescence

techniques has been reported. [49] In addition to its innate

fluorescence, the use of radiolabeled doxorubicin as a

radiotracer has been previously investigated, as with 57Ni-

doxorubicin, [50] and 99mTc-doxorubicin. [51, 52].

We hereby describe the synthesis of 125I-doxorubicin and

evaluated it as a new tumor-imaging model. The suggested

structures are further studied on the molecular level using

docking and molecular dynamics. While molecular docking

can shed light on the possible poses for the interaction

between the drug (doxorubicin derivatives) and the target

(DNA), molecular dynamics (MD) can offer a more realistic

simulation of the interaction dynamics over a trajectory [53].

With MD, the stability of the drug-DNA complex can be

determined while factoring in the effect of explicit solvent

molecules [53]. In addition, the affinity score is calculated in

MD as a time-averaged property. The affinity scores from

both in silico techniques are compared and discussed.

Experimental

Materials and equipment

All chemicals were of analytical grade. Doxorubicin

[C27H29NO11],M.wt. = 543.52 g/mol, and all other chemicals,

Sigma-Aldrich Company, Egypt. No-carrier-added sodium

iodide (NCA Na125I, 3.7 GBq/mL), Radioisotope Production

Factory, Atomic Energy Authority, Egypt. Whatman paper no.

1, Merck, Germany. A NaI(Tl) c-ray scintillation counter,

Scaler Ratemeter SR7 model, UK. Shimadzu HPLC, UV

spectrophotometer detector SpD-6A, Reversed phase Waters

Symmetry C18 (RP-18) column, Lischrosorb, Merck, pump

LC-9A, fraction Collector-LKB, Bromma, Japan.

Animal model

Normal Swiss albino mice (20–40 g) were obtained from

Helwan University, Egypt. Animal studies were conducted

according to the Egyptian Atomic Energy Authority

(EAEA) guidelines that approved by the animal ethics

committee were followed for all animal studies.

Radioiodination procedure

Synthesis of radioiodinated doxorubicin was carried out by

direct electrophilic substitution with 125I using chloramine-

T (CAT) as an oxidizing agent. In addition to its desirable

half-life time (t1/2 = 59.4 days), 125I affords the ability to

use high specific activity iodide no carried added iodine

[54–57]. Various reaction parameters, including the chlo-

ramine-T amount, doxorubicin amount, reaction pH and

reaction time, were optimized to obtain the maximum

radiochemical yield. Doxorubicin, CAT, and sodium

metabisulfite stock solutions were prepared with concen-

trations of 0.4, 1.0 and 10.0 mg/mL, respectively. In amber

colored vials, the different volumes containing (4–160 lg)
of doxorubicin were mixed with different volumes

(50–350 lL) of freshly prepared CAT solution containing

(50–350 lg) of CAT. 10 lL of 125I (7.2 MBq) was added

to each of the reaction mixtures and then the pH was

adjusted by 0.1 N HCl and 0.1 N NaOH to be in the range

of 3–12. Each reaction mixture was completed to 0.5 mL

by distilled water and shaken by electric vortex. The

reaction time (5–90 min) was studied. 50 lL sodium

metabisulfite solution (10 mg/mL) was used to quench the

reaction by reducing excess iodine (I2) to iodide (I-)

[54–57].

Quality control of radioiodinated doxorubicin

Radiochemical yield and in vitro assay assessment

Ascending paper chromatography (PC) was used to assess

the radiochemical yield and in vitro stability of 125I-dox-

orubicin. In the paper chromatography (PC) method,

Whatman paper number 1 strips were developed using a

fresh mixture of 70% v/v methanol as a developing sol-

vent. Free radioiodide (I-) stayed at the spotting point

(Rf = 0–0.1), while the radioiodinated doxorubicin reached

Rf = 0.85. On each paper srtip (1 cm 9 13 cm), 1–2 lL of

the prepared kit was seeded 2 cm above the lower edge,

Fig. 1 Doxorubicin
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evaporated, and then developed. After full development,

each strip was dried and cut into strips (1 cm) then counted

in a well type c-counter.

Purification and radiochemical purity assessment

For purification and radiochemical purity evaluation of

radioiodinated doxorubicin, HPLC was used. An optimum

reaction mixture (500 lL) was fed into a Lichrospher RP18
column. The HPLC was operated at 254 nm wavelength

using acetonitrile: water (15:85, v/v) with 1 mL/min flow

rate. Each 0.5 mL fraction was collected using a fraction

collector and counted in a well type c-counter. As shown in
Fig. 2, the retention time of free radioiodide and radioio-

dinated doxorubicin were at 5 and 14.3 min, respectively.

Collecting fractions from 13.5 to 15 min provided the

purified radioiodinated doxorubicin.

Solid tumor induction in mice

Ehrlich ascites carcinoma (EAC) derived from a murine

mammary carcinoma was used to induce solid tumor. The

parent tumor line EACwas diluted with sterile physiological

solution. For inducing a solid tumor, 200 lL of EAC solu-

tion was injected intramuscularly in the right thigh of female

Albino mice and left to grow for 4–6 days [31, 57, 58].

Biodistribution study of radioiodinated
doxorubicin

Radioiodinated doxorubicin biodistribution in tumor bear-

ing female Albino Swiss mice was evaluated out at 20 min,

0.5, 1, 1.5, 2, 2.5, 3, 4, and 24 h post-injection (p.i.).

Radioiodinated doxorubicin (3.7 MBq) in 10 lL was

intravenously injected into the mouse-tail vein. Then each

mouse was anesthetized and weighed. Samples of fresh

blood, bone, and muscle were separated and counted in a

well type c-counter and they were calculated to be 7, 10,

and 40% of the total body weight, respectively [58–60]. All

other body organs and tissues were separated and counted

in a well type c-counter. Percent-injected dose per gram (%

ID/g ± SEM) in a population of five mice for each time

point are reported.

Statistical analysis

One-way analysis of variance test evaluated all data.

Results for p are reported, and all the results are given as

mean ± SEM. The level of significance was set at

p\ 0.05.

Molecular docking

Docking was performed with Autodock4 [61]. The input

files were prepared using Autodock Tools [61]. The crystal

structure (PDF ID: 1d12) [47] used for the DNA and the

intercalating doxorubicin has a resolution of 1.7 Å and an

R-value of 0.177. The crystal is composed of a single-

stranded DNA with a total 6 of DNA bases where dox-

orubicin is between the fifth cytosine and the sixth guanine.

All extra ligands other than doxorubicin were removed.

Gasteiger charges were used to assign partial charges for

the DNA and all ligands. In total, four ligands were

docked: doxorubicin (ligand 1), 1-iodotetracene (ligand 2),

3-iodotetracene (ligand 3), and 1,3-diiodotetracene (ligand

4) doxorubicin derivatives. All ligands are illustrated in

Fig. 8. Rigid-rigid docking was adopted; that is, all rotat-

able bonds of the ligands were fixed at their crystallo-

graphic values. We docked the ligands using a genetic

algorithm (50 steps) in a box centered on the native ligand

with default Autodock parameters. Cluster analysis was
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done and the reported values are for the highest populated

clusters.

Molecular dynamics

Four dynamics trajectories were run for the DNA in

complex with the four ligands given in Fig. 8, one at a

time. Each of the four trajectories started from the crys-

tallographic coordinates (PDB ID: 1d12). Ambertools 14

[62] was used to prepare initial topology and coordinate

files for the complexes. The PDB file (PDB ID 1d12) was

cleaned from other ligands except doxorubicin while

retaining crystallographic water molecules. The structures

for protein–ligand complexes were then prepared using the

pdb4amber and reduce programs [63]. The forcefield

AMBER ff12SB [64, 65], which is suitable for both DNA

and proteins, was used to parameterize the DNA residues.

On the other hand, doxorubicin (ligand 1) and other ligands

(ligands 2–4) were parameterized using ANTECHAMBER

[66] to generate parameters that are consistent with the

General Amber Force Field (GAFF) [66]. The semi-em-

pirical method AM1-BCC was used to assign charges. The

complex was solvated using an extra 2608 TIP3P water
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2 4 6 23.8 24.0
0

10

20

30

40

50

60

70

80

90

100

R
ad

io
ch

em
ic

al
 Y

ie
ld

, (
 %

 )

Time post iodination, hours

% 125 I-Doxorubicin
% Free radioiodide (I -)

Fig. 4 In vitro stability of radioiodinated doxorubicin

Journal of Radioanalytical and Nuclear Chemistry (2018) 317:1243–1252 1247

123



molecules in an octahedral box with the addition of four

sodium ions to neutralize the negatively-charged DNA

fragment. Using the AMBER Molecular Dynamics pack-

age [62], we adopted a standard protocol for molecular

dynamics consisting of minimization, heating, density

equilibration, and production. The AMBER input files are

similar to those in the supplementary information of the

previous work of Salem and Brown [67]. The trajectory

lengths for heating, density equilibration, and production

were 20 ps, 50 ps and 10 ns, respectively. The trajectories

were analyzed using CPPTraj [68], XMgrace [69], and

VMD [70].Free energy calculations were done using the

Generalized Born-Surface Area (GBSA) algorithm imple-

mented in AMBER12 [71].

Results and discussion

Radioiodination

Radioiodination of doxorubicin was optimized through

studying chloramine-T (CAT) amount, doxorubicin

amount, pH and reaction time parameters to obtain the

maximum radiochemical yield [54–57]. A maximum

radiochemical purity (94 ± 0.3%) was obtained using

200 lg of CAT amount, 20 lg doxorubicin amount, at pH

5 and for 30 min reaction time Fig. 3.

In vitro stability of radioiodinated doxorubicin

To determine the suitable time for radioiodinated doxoru-

bicin injection to avoid undesired radioactive products

formation, the in vitro stability was studied. Radioiodinated

doxorubicin was in vitro stable up to 24 h as shown in

Fig. 4.

Biodistribution study of radioiodinated
doxorubicin

The distribution of radioiodinated doxorubicin was studied

in solid tumor-bearing mice, percent injected dose per

gram (%ID/g) at 20 min, 0.5, 1, 1.5, 2, 2.5, 3, 4 and 24 h

post-injection (p.i.). The %ID/g of radioiodinated doxoru-

bicin in different body organs and fluids is illustrated in

Fig. 5. Radioiodinated doxorubicin did not show selective

accumulation in a specific body organ, besides it was

eliminated via hepatobiliary pathway. The low thyroid

uptakes of radioiodinated doxorubicin confirm their in vivo

stability. The tumor tissue (mouse right leg muscle)/normal

tissue (mouse left leg muscle) (T/NT) ratio is the main

parameter to evaluate the selectivity and sensitivity of

radioiodinated doxorubicin to solid tumor [3, 13, 14].

Figure 6 shows the radioiodinated doxorubicin Tumor/

Normal muscle (T/NT) ratio in solid tumor-bearing mice.
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T/NT ratio was * 1.4 at 15 min p.i. that increased to its

maximum value of * 6.4 at 30 min p.i. confirming high

tumor cells selectivity. This high preclinical T/NT ratio

presents radioiodinated doxorubicin as a new non-invasive

solid tumor imaging probe if compared other different

agents such as: [99mTc(CO)3(IDA–PEG3–CB)]
- (3.45, 3 h

p.i.), 99mTc-BnAO-NI (2.59, 2 h p.i.), 99mTc(CO)3–labeled

chlorambucil analog (3.2 at 3 h p.i), radioiodinated epiru-

bicin (5.2 ± 0.09 at 1 h p.i.), 99mTc-nitridepyrazolo[1,5-

a]pyrimidine (2.2 at 1 h p.i.), radioiodinated anastrozole

(4.7 ± 0.06 at 2 h p.i.), 99mTc-DETA (2.47 at 4 h p.i.),
99mTc-PyDA (3 at 1 h p.i.), 99mTc-TETA (2.45 at 4 h p.i.),
99mTc-sunitinib (3 at 1 h p.i.), 99mTc-TEPA (2.91 at 4 h

p.i.), 99mTc-meropenem (3.5 at 1 h p.i.), 99mTc-citro-folate

(4.3 at 4 h p.i.), and 99mTc-gemcitabine (4.9 at 2 h p.i.)

[3, 10, 12–14, 32–42]. All of these results present

radioiodinated doxorubicin as a promising solid tumor-

imaging agent.

Molecular docking

The ligands used in the docking experiment are illustrated

in Fig. 7. As shown in Table 1, the iodo-substituted dox-

orubicins have similar predicted binding affinity relative to

the native ligand. Figure 8 shows the bioactive binding

pose of doxorubicin, as given in the crystal structure (PDB

ID: 1d12). Any substitution on the highlighted ring in

Fig. 8 will cause the iodine to be more exposed to the

Fig. 7 The ligands included in

the docking and MD simulation

studies

Table 1 Numerical results for the docking and MD experiments

Ligand Docking MD

Dock score (kcal/mol) vDW, H-bond and desolvation energy (kcal/mol) GBSA energy (kcal/mol)

Native - 7.1 - 9.4 - 15.2

Para - 7.1 - 9.3 - 16.6

Ortho - 7.1 - 9.5 - 18.1

Ortho–para - 7.4 - 9.6 - 18.9
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solvent. Since iodine is of significantly greater polariz-

ability than hydrogen, it is capable of forming favorable

London dispersion forces with water in the surrounding

medium. Hence, iodo-substitution of doxorubicin is

accompanied by less solvation penalty.

This hypothesis is supported by the values reported for

the term for van der Waals (and hence London dispersion

forces), H-bond, and desolvation energies in Table 1. The

docking scores shows marginal improvement (slightly

more negative) energy for the diiodo-substituted ligand.

The energy difference of 0.3 kcal/mol is not enough to

draw a conclusion on the relative affinities and thus

molecular dynamics was performed to have a more accu-

rate picture.

Molecular dynamics (MD)

The stability and binding affinity of the four ligands in

complex with the DNA fragment were further studied via

MD. Figure 9 shows the root-mean-square deviations

(RMSD) over a trajectory of 10 ns. It is clear from Fig. 9

that the iodo-substituted ligands have better stability (lower

RMSD average) than the native doxorubicin. The generally

high RMSD fluctuations can be rationalized by the simu-

lation conditions where the ligand is sandwiched between

the last two DNA bases in the DNA fragment, see Fig. 7.

This allowed more flexibility for the terminal guanine base.

Table 1 shows the results for binding affinity of each

ligand using GBSA algorithm over the interval of 10 ns

starting from the beginning of the simulation. Similar to the

docking studies, the iodo-substituted doxorubicin has better

predicted binding affinity. Interestingly, the ligand with

both ortho and para substitutions with respect to the

4-methoxy substituent (ligand 4) has the best binding

affinity in the MD study which is in agreement with the

rigid docking study.

Conclusion

In this work, we present the synthesis of 125I-doxoru-

bicin together with its evaluation as a promising solid

tumor-imaging agent. The in vitro and in vivo stability

of 125I-doxorubicin were confirmed. In addition, the

preclinical T/NT ratio was large (* 6.4 at 30 min) as

compared to similar agents. Docking studies showed

equivalent binding affinities for free doxorubicin and

the iodinated models. Studying the molecular dynamics

trajectories for doxorubicin and three suggested models

of 125I-doxorubicin reveal better stability and slightly

higher affinity for the DNA-125I-doxorubicin complex.

Overall, radioiodinated doxorubicin appears to be a

promising non-invasive probe for solid tumor imaging.
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