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Abstract: A new series of pyrazolylpyridines was prepared by reaction of ethyl-3-acetyl-1,5-diphenyl-
1H-pyrazole-4-carboxylate with the appropriate aldehyde, malononitrile, or ethyl acetoacetate
and an excess of ammonium acetate under reflux in acetic acid. Similarly, two novel bipyridine
derivatives were prepared by the above reaction using terephthaldehyde in lieu of benzaldehyde
derivatives. In addition, a series of 1,2,4-triazolo[4,3-a]pyrimidines was synthesized by a reaction of
6-(pyrazol-3-yl)pyrimidine-2-thione with a number of hydrazonoyl chlorides in dioxane and in the
presence of triethylamine. The structure of the produced compounds was established by elemental
analyses and spectral methods, and the mechanisms of their formation was discussed. Furthermore,
the pyrazolyl-pyridine derivatives were tested as anticancer agents and the results obtained showed
that some of them revealed high activity against human hepatocellular carcinoma (HEPG2) cell lines.
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1. Introduction

A literature survey revealed that compounds, including the pyrazole nucleus, are extensively
used as a precursor for the synthesis of compounds presenting many applications, such as electrolyte
additives in batteries [1], catalysis [2], photographic materials [3], agrochemicals [4], and dyes [5].
The chemical versatility of the pyrazole and its analogues has attracted interest because it allows a
range of applications in the pharmaceutical industry. Many pyrazole-derived compounds are known
to exhibit anticancer [6–10], antimicrobial [11,12], antiviral [13], antiparasitic [14], anti-inflammatory [15,16],
antipyretic [17], analgesic [18], anticoagulant [19], and anti-obesity [20] biological activities. The
pyridine nucleus is a key constituent, present in a range of bioactive compounds, occurring both
synthetically and naturally with wide range of biological applications [21,22]. Among the successful
examples as drug candidates possessing pyridine nuclei are streptonigrin, streptonigrone, and
lavendamycin, which are described in the literature as anticancer drugs. Some pyridine derivatives
were studied for their topoisomerase inhibitory activity and cytotoxicity against several human cancer
cell lines for the development of novel anticancer agents. As a result, it has been reported that various
pyridine derivatives, as bioisosteres of α-terthiophene (potent protein kinase C inhibitor) [23], have
significant topoisomerase I and/or II inhibitory activity, and cytotoxicity against several human cancer
cell lines [24–28]. Early reports on the ability of α-terpyridine to form metal complexes [29] and to

Appl. Sci. 2017, 7, 785; doi:10.3390/app7080785 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-7739-2837
https://orcid.org/0000-0002-9762-0323
http://dx.doi.org/10.3390/app7080785
http://www.mdpi.com/journal/applsci


Appl. Sci. 2017, 7, 785 2 of 13

bind with DNA/RNA [30] have been the base for the study on pyridine derivatives as antitumor
agents. On the other hand, multicomponent reactions (MCRs) are powerful tools in modern medicinal
chemistry, facilitating the lead generation by providing access to drug-like compounds, helping in
drug discovery [31–33]. Additionally, the utility of MCR under microwave irradiation in the synthesis
of heterocyclic compounds enhanced the reaction rates and improved the regioselectivity [34,35].
Over the last decade, several research groups adopted a hybridization approach for the design of
pyrazole-pyridine hybrid analogs and illuminated their synthetic and medicinal importance [36–42].

In light of the above findings and in continuation of our efforts to synthesize new anticancer
compounds [43–52], the aim of presented report is to synthesize a new series of pyrazolyl-pyridines
via multicomponent reactions which are expected to be active as antitumor agents.

2. Results and Discussion

2.1. Chemistry

Ethyl 3-acetyl-1,5-diphenyl-1H-pyrazole-4-carboxylate (1) [53] was used as the starting compound
for the preparation of a number of novel pyrazolyl-pyridine derivatives via one-pot multicomponent
reactions. For example, a series of novel 2-amino-3-cyano-6-(pyrazol-3-yl)-pyridines 4a–f was prepared
by a one-pot reaction of 3-acetylpyrazole derivative 1 with the appropriate aldehyde 2, malononitrile
3, and ammonium acetate under reflux in acetic acid (Scheme 1). Both elemental analyses and spectral
data were used to elucidate the structures of the products 4a–f. The IR spectra of compounds 4a–f
revealed in each case three absorption bands in the regions υ 3431–3211, 2218–2210, 1715–1709 cm−1

attributed to the NH2, CN and C=O groups. The 1HNMR spectrum of compound 4a taken as a
typical example of the products 4, revealed two signals at δ = 6.93 (brs, 2H, NH2) and 8.11 (s, 1H,
pyridine-H5), in addition to the expected signals for the aryl and ester protons. Moreover, the mass
spectra of product 4 showed in each case the respective molecular ion peak which is consistent with
the assigned structure.
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In a similar manner, another series of pyrazolylpyridines 6a–f was synthesized using ethyl
acetoacetate in lieu of malononitrile. Thus, the reaction of 3-acetylpyrazole derivative 1 with the
appropriate aldehyde 2, ethyl acetoacetate 5, and ammonium acetate in refluxing acetic acid afforded
the corresponding products 6a–f (Scheme 2). The structure 6 assigned for the obtained products
was established by elemental analyses and spectral (IR, 1HNMR, and MS) data. For example, the IR
spectra of products 6a–f revealed, in each case, four absorption bands assigned for the three carbonyl
groups and the -NH group of the pyridinone ring (see Section 3). The 1HNMR spectra displayed three
singlet signals near δ 2.58, 9.80 and 7.79 ppm attributed to the acetyl, NH and pyridinyl-5H protons,
in addition to the expected signals due to the ester and aryl protons (see Section 3).
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To account for the formation of products 4 and 6, it was suggested that the reaction proceeds
by condensation of the acetyl group of Compound 1 with the aldehyde to give the corresponding
chalcone which reacts with ammonium acetate to give the imino derivative, followed by tandem
Michael addition of the active methylene group of 3 (or 5) to afford the non-isolable tetrahydropyridine
intermediates A (or B). The latter undergo in situ auto-oxidation (followed by tautomerization in case
of A) and formation of the final products 4 (or 6) (Scheme 3).
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Our study was extended to prepare another new bipyridine derivatives including the pyrazole
moiety via multi-component reaction. Thus, the reaction of 3-acetylpyrazole derivative 1 with
terephthaldehyde 7, malononitrile 3, and ammonium acetate in acetic acid under reflux furnished the
bipyridine derivative 8 (Scheme 4).

Similarly, the reaction of compound 1 with terephthaldehyde, ethyl acetoacetate 5, and ammonium
acetate in acetic acid under reflux gave the respective bipyridinone 9 (Scheme 4). The structure of
products 8 and 9 were confirmed by elemental analyses and spectral data (IR, 1HNMR, and MS)
(see Section 3).
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On the other hand, chalcone 10, prepared by the reaction of 1 with benzaldehyde in ethanol containing
catalytic amounts of NaOH [54], was used for preparation of 6-(pyrazol-3-yl) pyrimidine-2-thione
derivative 11 via its reaction with thiourea in ethanol containing a catalytic amount of sodium
hydroxide [54]. Reaction of the latter compound 11 with a number of hydrazonoyl chlorides 12a–h [55]
in dioxane in the presence of triethylamine afforded the respective products 15a–h through the
non-isolated intermediates 13 and 14 (Scheme 5). The structure assigned for the products 15 was
established via microanalytical and spectral data (see Section 3). For example, the IR spectra of product
15 revealed the absence of the pyrimidinyl-NH groups, and instead showed two absorption bands
near υ 1706 and 1649 cm−1 assigned for the two carbonyl groups. Additionally, 1HNMR spectra of
product 15 showed the absence of the signals attributed to the pyrimidinyl-NH protons and, instead,
revealed the signals assigned for the acetyl protons (for 15a–d) or the ethoxycarbonyl protons (for
15e–h), in addition to the characteristic signals due to the ester and aromatic protons (see Section 3).
The mass spectra of product 15 showed, in each case, the respective molecular ion peak, which is
consistent with the assigned structure.
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2.2. Antitumor Activity

The cytotoxicity of the synthesized pyridines 4a,b,e and 6a,b,e was evaluated against the
human liver carcinoma cell line (HepG2-1) using doxorubicin as a reference drug (IC50 value of
doxorubicin = 0.08 ± 0.07 nM) and MTT assay. The data generated were used to plot a dose response
curve of which the concentration of the tested compounds required to kill 50% of cell population (IC50)
was determined. Cytotoxic activity was expressed as the mean IC50 of three independent experiments.
The results are depicted in Table 1 and Figure 1.

Table 1. IC50 values of tested compounds 4 and 6 ± standard deviation against HEPG2-1.

Compound No. X Y Z IC50 (nM) General Structure

Doxorubicin - - - 0.08 ± 0.07

Appl. Sci. 2017, 7, 785  5 of 13 

= 0.08 ± 0.07 nM) and MTT assay. The data generated were used to plot a dose response curve of 
which the concentration of the tested compounds required to kill 50% of cell population (IC50) was 
determined. Cytotoxic activity was expressed as the mean IC50 of three independent experiments. 
The results are depicted in Table 1 and Figure 1. 

Table 1. IC50 values of tested compounds 4 and 6 ± standard deviation against HEPG2-1. 

Compound No. X Y Z IC50 (nM) General Structure 
Doxorubicin - - - 0.08 ± 0.07  

4a H CN NH2 9.7 ± 0.85 
4b Me CN NH2 1.9 ± 0.16 
4e Cl CN NH2 17.2 ± 0.83 
6a H MeCO OH 12.3 ± 0.37 
6b Me MeCO OH 2.4 ± 0.29 
6e Cl MeCO OH 22.3 ± 0.36 

The results revealed that the descending order of the antitumor activity of the tested compounds 
against HEPG2-1cell line is as follow: 4b > 6b > 4a > 6a > 4e > 6e. 

The pyridine derivatives 4b and 6b (IC50 = 1.9 ± 0.16 and 2.4 ± 0.29 nM, respectively) have 
promising antitumor activity against HEPG2-1. On the other hand, pyridine derivatives 4e and 6e 
have poor inhibitory activity (IC50 > 17 nM) compared with doxorubicin which used as reference drug. 

 

Figure 1. Cytotoxic activities of tested compounds against HEPG2-1. 

Structural Activity Relationship SAR 

Examination of the SAR led to the following conclusions: 
The activity of the synthesized compounds 4 and 6 against hepatocellular carcinoma depends 

on the structural skeleton and electronic environment of the molecules. For example, the activity of 
the tested compounds 4a,b,e and 6a,b,e were found to be highly related to their structures since 
replacement of electron-donating groups in the two aryl groups in compounds 4b and 6b with 
electron-withdrawing groups in compounds 4e and 6e dramatically decreases their cytotoxicity 
against HEPG2-1. On the other hand, the cytotoxicity of compounds 4a and 6a whose structures 
contain two phenyl groups (no substituent), is intermediate between the highly-potent and the 
weakly-potent compounds (See Table 1). 

  

0

5

10

15

20

25

IC
 5

0 
(n

M
)

4a H CN NH2 9.7 ± 0.85
4b Me CN NH2 1.9 ± 0.16
4e Cl CN NH2 17.2 ± 0.83
6a H MeCO OH 12.3 ± 0.37
6b Me MeCO OH 2.4 ± 0.29
6e Cl MeCO OH 22.3 ± 0.36

Appl. Sci. 2017, 7, 785  5 of 13 

= 0.08 ± 0.07 nM) and MTT assay. The data generated were used to plot a dose response curve of 
which the concentration of the tested compounds required to kill 50% of cell population (IC50) was 
determined. Cytotoxic activity was expressed as the mean IC50 of three independent experiments. 
The results are depicted in Table 1 and Figure 1. 

Table 1. IC50 values of tested compounds 4 and 6 ± standard deviation against HEPG2-1. 

Compound No. X Y Z IC50 (nM) General Structure 
Doxorubicin - - - 0.08 ± 0.07  

4a H CN NH2 9.7 ± 0.85 
4b Me CN NH2 1.9 ± 0.16 
4e Cl CN NH2 17.2 ± 0.83 
6a H MeCO OH 12.3 ± 0.37 
6b Me MeCO OH 2.4 ± 0.29 
6e Cl MeCO OH 22.3 ± 0.36 

The results revealed that the descending order of the antitumor activity of the tested compounds 
against HEPG2-1cell line is as follow: 4b > 6b > 4a > 6a > 4e > 6e. 

The pyridine derivatives 4b and 6b (IC50 = 1.9 ± 0.16 and 2.4 ± 0.29 nM, respectively) have 
promising antitumor activity against HEPG2-1. On the other hand, pyridine derivatives 4e and 6e 
have poor inhibitory activity (IC50 > 17 nM) compared with doxorubicin which used as reference drug. 

 

Figure 1. Cytotoxic activities of tested compounds against HEPG2-1. 

Structural Activity Relationship SAR 

Examination of the SAR led to the following conclusions: 
The activity of the synthesized compounds 4 and 6 against hepatocellular carcinoma depends 

on the structural skeleton and electronic environment of the molecules. For example, the activity of 
the tested compounds 4a,b,e and 6a,b,e were found to be highly related to their structures since 
replacement of electron-donating groups in the two aryl groups in compounds 4b and 6b with 
electron-withdrawing groups in compounds 4e and 6e dramatically decreases their cytotoxicity 
against HEPG2-1. On the other hand, the cytotoxicity of compounds 4a and 6a whose structures 
contain two phenyl groups (no substituent), is intermediate between the highly-potent and the 
weakly-potent compounds (See Table 1). 

  

0

5

10

15

20

25

IC
 5

0 
(n

M
)

Figure 1. Cytotoxic activities of tested compounds against HEPG2-1.

The results revealed that the descending order of the antitumor activity of the tested compounds
against HEPG2-1cell line is as follow: 4b > 6b > 4a > 6a > 4e > 6e.

The pyridine derivatives 4b and 6b (IC50 = 1.9 ± 0.16 and 2.4 ± 0.29 nM, respectively) have
promising antitumor activity against HEPG2-1. On the other hand, pyridine derivatives 4e and 6e
have poor inhibitory activity (IC50 > 17 nM) compared with doxorubicin which used as reference drug.

Structural Activity Relationship SAR

Examination of the SAR led to the following conclusions:
The activity of the synthesized compounds 4 and 6 against hepatocellular carcinoma depends

on the structural skeleton and electronic environment of the molecules. For example, the activity
of the tested compounds 4a,b,e and 6a,b,e were found to be highly related to their structures since
replacement of electron-donating groups in the two aryl groups in compounds 4b and 6b with
electron-withdrawing groups in compounds 4e and 6e dramatically decreases their cytotoxicity against
HEPG2-1. On the other hand, the cytotoxicity of compounds 4a and 6a whose structures contain
two phenyl groups (no substituent), is intermediate between the highly-potent and the weakly-potent
compounds (See Table 1).
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3. Experimental

3.1. Chemistry

Melting points were measured on an Electrothermal IA 9000 series (Bibby Sci. Lim. Stone, Staffordshire,
UK) digital melting point apparatus. The IR spectra were recorded in potassium bromide discs on a Pye
Unicam SP 3300 (Cambridge, UK) and a Shimadzu FT IR 8101 PC infrared (Shimadzu, Tokyo, Japan)
spectrophotometer. 1H-NMR spectra were recorded in deuterated dimethyl sulfoxide (DMSO-d6)
using a Varian Gemini 300 NMR spectrometer (Varian, Inc., Karlsruhe, Germany). Mass spectra were
recorded on a Shimadzu GCMS-QP1000 EX mass spectrometer (Tokyo, Japan) at 70 eV. Elemental
analysis was carried out at the Microanalytical Centre of Cairo University, Giza, Egypt. All reactions
were followed by TLC (Silica gel, Merck, Darmstadt, Germany).

3.1.1. Synthesis of Tetra-Substituted Pyridine Derivatives (4a–f and 6a–f)

General procedure: A mixture of ethyl 3-acetyl-1,5-diphenyl-1H-pyrazole-4-carboxylate (1)
(0.334 g, 1 mmol), the appropriate aldehyde 2a–f (1 mmol) and malononitrile (3), or ethyl acetoacetate
(5) (1 mmol) in glacial acetic acid (20 mL) containing ammonium acetate (0.616 g, 8 mmol) was refluxed
for 6–8 h (monitored by TLC). After complete reaction, the mixture was cooled and the precipitated
products were filtered, washed with water, dried, and crystallized from ethanol to give the pyridine
derivatives 4a–f and 6a–f, respectively. Compounds 4a–f and 6a–f together with their physical and
spectral data are listed below:

Ethyl 3-(6-amino-5-cyano-4-phenylpyridin-2-yl)-1,5-diphenyl-1H-pyrazole-4-carboxylate (4a). Brown solid,
(70% yield), mp 169–171 ◦C; IR (KBr) νmax 3364, 3208 (NH2), 2218 (CN), 1715 (C=O) cm−1; 1H NMR
(DMSO-d6) δ 1.02 (t, J = 7.2 Hz, 3H, CH3), 4.13 (q, J = 7.2 Hz, 2H, CH2), 6.93 (s, br, 2H, NH2), 7.18–7.90
(m, 15H, Ar-H), 8.11 (s, 1H, Pyridine-H5); MS m/z (%) 485 (M+, 14), 322 (47), 252 (29), 167 (38), 77 (52),
43 (100). Anal. Calcd. for C30H23N5O2 (485.55): C, 74.21; H, 4.77; N, 14.42. Found: C, 74.05; H, 4.52;
N, 14.26%.

Ethyl 3-(6-amino-5-cyano-4-(p-tolyl)pyridin-2-yl)-1,5-diphenyl-1H-pyrazole-4-carboxylate (4b). Brown solid,
(72% yield), mp 180–182 ◦C; IR (KBr) νmax 3379, 3211 (NH2), 2210 (CN), 1712 (C=O) cm−1; 1H NMR
(DMSO-d6) δ 1.01 (t, J = 7.2 Hz, 3H, CH3), 2.36 (s, 3H, CH3), 4.12 (q, J = 7.2 Hz, 2H, CH2), 6.92 (s, br, 2H,
NH2), 7.14–7.94 (m, 14H, Ar-H), 8.15 (s, 1H, Pyridine-H5); MS m/z (%) 499 (M+, 15), 468 (32), 364 (39),
209 (42), 104 (38), 78 (72), 43 (100). Anal. Calcd. for C31H25N5O2 (499.57): C, 74.53; H, 5.04; N, 14.02.
Found: C, 74.37; H, 5.00; N, 13.85%.

Ethyl 3-(6-amino-5-cyano-4-(4-methoxyphenyl)pyridin-2-yl)-1,5-diphenyl-1H-pyrazole-4-carboxylate (4c).
Pale green solid, (68% yield), mp 154–156 ◦C; IR (KBr) νmax 3367, 3219 (NH2), 2210 (CN), 1714
(C=O) cm−1; 1H NMR (DMSO-d6) δ 1.02 (t, J = 7.2 Hz, 3H, CH3), 3.78 (s, 3H, OCH3), 4.15 (q, J = 7.2 Hz,
2H, CH2), 6.93 (s, br, 2H, NH2), 7.18–7.80 (m, 14H, Ar-H), 8.12 (s, 1H, Pyridine-H5); MS m/z (%) 515
(M+, 9), 452 (42), 316 (100), 234 (51), 182 (37), 118 (50), 76 (66). Anal. Calcd. for C31H25N5O3 (515.57): C,
72.22; H, 4.89; N, 13.58. Found: C, 72.01; H, 4.77; N, 13.30%.

Ethyl 3-(6-amino-5-cyano-4-(4-(dimethylamino)phenyl)pyridin-2-yl)-1,5-diphenyl-1H-pyrazole-4-carboxylate
(4d). Dark yellow solid, (73% yield), mp 150–152 ◦C; IR (KBr) νmax 3431, 3212 (NH2), 2210 (CN), 1709
(C=O) cm−1; 1H NMR (DMSO-d6) δ 1.01 (t, J = 7.2 Hz, 3H, CH3), 2.97 (s, 6H, 2CH3), 4.11 (q, J = 7.2 Hz,
2H, CH2), 6.82 (s, br, 2H, NH2), 7.14–7.82 (m, 14H, Ar-H), 8.10 (s, 1H, Pyridine-H5); MS m/z (%) 528
(M+, 14), 416 (80), 212 (100), 170 (27), 105 (48), 76 (63). Anal. Calcd. for C32H28N6O2 (528.62): C, 72.71;
H, 5.34; N, 15.90. Found: C, 72.59; H, 5.30; N, 15.73%.

Ethyl 3-(6-amino-4-(4-chlorophenyl)-5-cyanopyridin-2-yl)-1,5-diphenyl-1H-pyrazole-4-carboxylate (4e). Dark
yellow solid, (76% yield), mp 181–183 ◦C; IR (KBr) νmax 3362, 3218 (NH2), 2213 (CN), 1712 (C=O) cm−1;
1H NMR (DMSO-d6) δ 1.02 (t, J = 7.2 Hz, 3H, CH3), 4.14 (q, J = 7.2 Hz, 2H, CH2), 6.98 (s, br, 2H, NH2),
7.17–7.84 (m, 14H, Ar-H), 8.17 (s, 1H, Pyridine-H5); MS m/z (%) 521 (M+, 23), 519 (M+, 8), 397 (32), 316
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(60), 191 (55), 127 (51), 85 (47), 57 (100). Anal. Calcd. for C30H22ClN5O2 (519.99): C, 69.30; H, 4.26; N,
13.47. Found: C, 69.16; H, 4.18; N, 13.28%.

Ethyl 3-(6-amino-5-cyano-4-(2,4-dichlorophenyl)pyridin-2-yl)-1,5-diphenyl-1H-pyrazole-4-carboxylate (4f).
Yellow solid, (75% yield), mp 197–199 ◦C; IR (KBr) νmax 3367, 3215 (NH2), 2214 (CN), 1714 (C=O)
cm−1; 1H NMR (DMSO-d6) δ 1.04 (t, J = 7.2 Hz, 3H, CH3), 4.15 (q, J = 7.2 Hz, 2H, CH2), 7.06 (s, br, 2H,
NH2), 7.28–7.85 (m, 13H, Ar-H), 8.14 (s, 1H, Pyridine-H5); MS m/z (%) 554 (M+, 100), 316 (77), 281 (41),
193 (71), 105 (33), 58 (72). Anal. Calcd. for C30H21Cl2N5O2 (554.43): C, 64.99; H, 3.82; N, 12.63. Found:
C, 64.80; H, 3.61; N, 12.44%.

Ethyl 3-(5-acetyl-6-oxo-4-phenyl-1,6-dihydropyridin-2-yl)-1,5-diphenyl-1H-pyrazole-4-carboxylate (6a).
Brown solid, (68% yield), mp 186–188 ◦C; IR (KBr) νmax 3367 (NH), 1722, 1690, 1657 (3C=O) cm−1;
1H NMR (DMSO-d6) δ 1.03 (t, J = 7.2 Hz, 3H, CH3), 2.58 (s, 3H, CH3), 4.12 (q, J = 7.2 Hz, 2H, CH2),
7.24–7.49 (m, 15H, Ar-H), ), 7.77 (s, 1H, Pyridine-H5), 9.63 (s, br, 1H, NH); MS m/z (%) 503 (M+, 48),
458 (27), 334 (52), 232 (46), 99 (54), 57 (68), 43 (100). Anal. Calcd. for C31H25N3O4 (503.56): C, 73.94; H,
5.00; N, 8.34. Found: C, 73.73; H, 4.86; N, 8.17%.

Ethyl 3-(5-acetyl-6-oxo-4-(p-tolyl)-1,6-dihydropyridin-2-yl)-1,5-diphenyl-1H-pyrazole-4-carboxylate (6b).
Brown solid, (66% yield), mp 134–136 ◦C; IR (KBr) νmax 3409 (NH), 1718, 1681, 1662 (3C=O) cm−1;
1H NMR (DMSO-d6) δ 1.02 (t, J = 7.2 Hz, 3H, CH3), 2.35 (s, 3H, CH3), 2.56 (s, 3H, CH3), 4.11 (q,
J = 7.2 Hz, 2H, CH2), 7.19–7.49 (m, 14H, Ar-H), ), 7.79 (s, 1H, Pyridine-H5), 9.81 (s, br, 1H, NH); MS m/z
(%) 517(M+, 23), 385 (33), 294 (38), 147 (50), 120 (100), 76 (62). Anal. Calcd. for C32H27N3O4 (517.59): C,
74.26; H, 5.26; N, 8.12. Found: C, 74.20; H, 5.14; N, 8.03%.

Ethyl 3-(5-acetyl-4-(4-methoxyphenyl)-6-oxo-1,6-dihydropyridin-2-yl)-1,5-diphenyl-1H-pyrazole-4-carboxylate
(6c). Pale brown solid, (67% yield), mp 141–143 ◦C; IR (KBr) νmax 3423 (NH), 1715, 1687, 1660 (3C=O)
cm−1; 1H NMR (DMSO-d6) δ 1.00 (t, J = 7.2 Hz, 3H, CH3), 2.57 (s, 3H, CH3), 3.77 (s, 3H, OCH3), 4.01
(q, J = 7.2 Hz, 2H, CH2), 7.16–7.54 (m, 14H, Ar-H), ), 7.74 (s, 1H, Pyridine-H5), 9.80 (s, br, 1H, NH);
MS m/z (%) 533 (M+, 14), 423 (37), 313 (51), 279 (100), 105 (36), 76 (43). Anal. Calcd. for C32H27N3O5

(533.58): C, 72.03; H, 5.10; N, 7.88. Found: C, 71.85; H, 5.02; N, 7.63%.

Ethyl 3-(5-acetyl-4-(4-(dimethylamino)phenyl)-6-oxo-1,6-dihydropyridin-2-yl)-1,5-diphenyl-1H-pyrazole-4-
carboxylate (6d). Brown solid, (69% yield), mp 141–143 ◦C; IR (KBr) νmax 3425 (NH), 1721, 1682, 1657
(3C=O) cm−1; 1H NMR (DMSO-d6) δ 1.00 (t, J = 7.2 Hz, 3H, CH3), 2.58 (s, 3H, CH3), 2.99 (s, 6H, 2CH3),
4.11 (q, J = 7.2 Hz, 2H, CH2), 6.78–7.39 (m, 14H, Ar-H), 7.72 (s, 1H, Pyridine-H5), 9.73 (s, br, 1H, NH);
MS m/z (%) 546 (M+, 14), 406 (36), 349 (55), 241 (49), 121 (36), 76 (30), 43 (100). Anal. Calcd. for
C33H30N4O4 (546.63): C, 72.51; H, 5.53; N, 10.25. Found: C, 72.39; H, 5.38; N, 10.02%.

Ethyl 3-(5-acetyl-4-(4-chlorophenyl)-6-oxo-1,6-dihydropyridin-2-yl)-1,5-diphenyl-1H-pyrazole-4-carboxylate
(6e). Brown solid, (68% yield), mp 170–172 ◦C; IR (KBr) νmax 3366 (NH), 1720, 1680, 1663 (3C=O) cm−1;
1H NMR (DMSO-d6) δ 1.06 (t, J = 7.2 Hz, 3H, CH3), 2.58 (s, 3H, CH3), 4.14 (q, J = 7.2 Hz, 2H, CH2),
7.24–7.59 (m, 14H, Ar-H), 7.78 (s, 1H, Pyridine-H5), 10.06 (s, br, 1H, NH); MS m/z (%) 540 (M+ + 2, 1),
538 (M+, 3), 368 (53), 214 (100), 120 (55), 40 (79). Anal. Calcd. for C31H24ClN3O4 (538.00): C, 69.21; H,
4.50; N, 7.81. Found: C, 69.46; H, 4.35; N, 7.66%.

Ethyl 3-(5-acetyl-4-(2,4-dichlorophenyl)-6-oxo-1,6-dihydropyridin-2-yl)-1,5-diphenyl-1H-pyrazole-4-carboxylate
(6f). Brown solid, (69% yield), mp 197–199 ◦C; IR (KBr) νmax 3414 (NH), 1720, 1683, 1659 (3C=O) cm−1;
1H NMR (DMSO-d6) δ 1.09 (t, J = 7.2 Hz, 3H, CH3), 2.61 (s, 3H, CH3), 4.15 (q, J = 7.2 Hz, 2H, CH2),
7.26–7.52 (m, 13H, Ar-H), 7.76 (s, 1H, Pyridine-H5), 10.24 (s, br, 1H, NH); MS m/z (%) 572 (M+, 12), 388
(64), 256 (44), 207 (67), 125 (50), 83 (42), 55 (100). Anal. Calcd. for C31H23Cl2N3O4 (572.44): C, 65.04; H,
4.05; N, 7.34. Found: C, 65.24; H, 4.02; N, 7.16%.
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3.1.2. Synthesis of Bipyridine Derivatives 8 and 9

A mixture of 3-acetylpyrazole derivative 1 (0.668 g, 2 mmol), terephthalaldehyde 7 (0.134 g,
1 mmol), and malononitrile 3 or ethyl acetoacetate 5 (2 mmol) in acetic acid (30 mL) containing
ammonium acetate (1.232 g, 16 mmol) was refluxed for 8 h. After cooling the reaction mixture it
was poured into an ice-water mixture, the formed a precipitate that was collected by filtration, then
crystallized from dioxane to give the bipyridine products 8 and 9, respectively.

Diethyl 3,3′-(1,4-phenylenebis(6-amino-5-cyanopyridine-4,2-diyl))bis(1,5-diphenyl-1H-pyrazole-4-carboxylate)
(8). Brown solid, (68% yield), mp 187–189 ◦C; IR (KBr) νmax 3378, 3201 (NH2), 2211 (CN), 1709 (C=O)
cm−1; 1H NMR (DMSO-d6) δ 1.03 (t, J = 7.2 Hz, 6H, 2CH3), 4.14 (q, J = 7.2 Hz, 4H, 2CH2), 6.93 (s, br,
4H, 2NH2), 7.18–7.49 (m, 20H, Ar-H), 7.85 (s, 4H, Ar-H), 8.10 (s, 2H, 2Pyridine-H3); MS m/z (%) 892
(M+, 39), 724 (48), 622 (63), 368 (39), 82 (60), 76 (57), 43 (100). Anal. Calcd. for C54H40N10O4 (892.98): C,
72.63; H, 4.52; N, 15.69. Found: C, 72.69; H, 4.36; N, 15.47%.

Diethyl 3,3′-(1,4-phenylenebis(5-acetyl-6-oxo-1,6-dihydropyridine-4,2-diyl))bis(1,5-diphenyl-1H-pyrazole-4-
carboxylate) (9). Brown solid, (66% yield), mp 207–209 ◦C; IR (KBr) νmax 3423 (NH), 1723, 1677, 1653
(3C=O) cm−1; 1H NMR (DMSO-d6) δ 1.11 (t, J = 7.2 Hz, 6H, 2CH3), 2.58 (s, 6H, 2CH3), 4.14 (q, J = 7.2 Hz,
4H, 2CH2), 7.24–7.48 (m, 20H, Ar-H), ), 7.77 (s, 2H, 2Pyridine-H3), 7.81 (s, 4H, Ar-H), 10.06 (s, br, 2H,
2NH); MS m/z (%) 929 (M+, 17), 776 (41), 509 (37), 386 (55), 267 (40), 148 (32), 77 (100), 43 (68). Anal.
Calcd. for C56H44N6O8 (929.00): C, 72.40; H, 4.77; N, 9.05. Found: C, 72.17; H, 4.62; N, 9.01%.

3.1.3. Synthesis of 1,5-Diphenyl-1,5-dihydro-[1,2,4]triazolo[4,3-a]pyrimidine derivatives 15a–h

General procedure: Triethylamine (0.14 mL, 1 mmol) was added to a mixture of equimolar
amounts of thione 11 (0.480 g, 1 mmol) and the appropriate hydrazonoyl halides 12a–h (1 mmol) in
dioxane (20 mL) at room temperature. The reaction mixture was then refluxed for 10–15 h until all
hydrogen sulfide gas stopped evolving. The solid that formed after concentration of the reaction
mixture was filtered and crystallized from the proper solvent to give the products 15a–h, respectively.

Ethyl 3-(3-acetyl-1,5-diphenyl-1,5-dihydro-[1,2,4]triazolo[4,3-a]pyrimidin-7-yl)-1,5-diphenyl-1H-pyrazole-4-
carboxylate (15a). Yellow solid, (74% yield), mp 233–235 ◦C (DMF); IR (KBr) νmax 3026, 2956 (C-H),
1706, 1649 (2C=O), 1595 (C=N) cm−1; 1H NMR (DMSO-d6) δ 1.15 (t, J = 7.2 Hz, 3H, CH3), 2.43 (s, 3H,
CH3), 4.19 (q, J = 7.2 Hz, 2H, CH2), 5.33 (d, J = 4 Hz, 1H, CH), 6.62 (d, J = 4Hz, 1H, CH), 7.03–7.80 (m,
20H, Ar-H); MS m/z (%) 606 (M+, 5),406 (36), 287 (29), 247 (75), 194 (37), 92 (71), 65 (60), 43 (100). Anal.
Calcd. for C37H30N6O3 (606.69): C, 73.25; H, 4.98; N, 13.85. Found: C, 73.07; H, 4.84; N, 13.67%.

Ethyl 3-(3-acetyl-5-phenyl-1-(p-tolyl)-1,5-dihydro-[1,2,4]triazolo[4,3-a]pyrimidin-7-yl)-1,5-diphenyl-1H-
pyrazole-4-carboxylate (15b). Yellow solid, (72% yield), mp 211–213 ◦C (DMF); IR (KBr) νmax 3030, 2951
(C-H), 1697, 1642 (2C=O), 1597 (C=N) cm−1; 1H NMR (DMSO-d6) δ 1.04 (t, J = 7.2 Hz, 3H, CH3), 2.24
(s, 3H, CH3), 2.44 (s, 3H, CH3), 4.16 (q, J = 7.2 Hz, 2H, CH2), 5.32 (d, J = 4 Hz, 1H, CH), 6.61 (d, J = 4Hz,
1H, CH), 7.05–7.73 (m, 19H, Ar-H); MS m/z (%) 620 (M+, 7), 498 (27), 390 (35), 285 (60), 105 (41), 77
(100), 43 (92). Anal. Calcd. for C38H32N6O3 (620.71): C, 73.53; H, 5.20; N, 13.54. Found: C, 73.39; H,
5.38; N, 13.36%.

Ethyl 3-(3-acetyl-1-(4-chlorophenyl)-5-phenyl-1,5-dihydro-[1,2,4]triazolo[4,3-a]pyrimidin-7-yl)-1,5-diphenyl-
1H-pyrazole-4-carboxylate (15c). Yellow solid, (74% yield), mp 242–244 ◦C (DMF/EtOH); IR (KBr) νmax

3028, 2963 (C-H), 1707, 1641 (2C=O), 1597 (C=N) cm−1; 1H NMR (DMSO-d6) δ 1.02 (t, J = 7.2 Hz, 3H,
CH3), 2.44 (s, 3H, CH3), 4.15 (q, J = 7.2 Hz, 2H, CH2), 5.36 (d, J = 4 Hz, 1H, CH), 6.69 (d, J = 4Hz, 1H,
CH), 7.27–7.70 (m, 19H, Ar-H); MS m/z (%) 643 (M+ + 2, 4), 641 (M+, 13), 499 (57), 322 (39), 180 (28),
105 (35), 77 (100). Anal. Calcd. for C37H29ClN6O3 (641.13): C, 69.32; H, 4.56; N, 13.11. Found: C, 69.19;
H, 4.51; N, 13.00%.

Ethyl 3-(3-acetyl-1-(4-nitrophenyl)-5-phenyl-1,5-dihydro-[1,2,4]triazolo[4,3-a]pyrimidin-7-yl)-1,5-diphenyl-1H-
pyrazole-4-carboxylate (15d). Yellow solid, (75% yield), mp 204–206 ◦C (EtOH); IR (KBr) νmax 3031, 2950
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(C-H), 1712, 1656 (2C=O), 1598 (C=N) cm−1; 1H NMR (DMSO-d6) δ 1.02 (t, J = 7.2 Hz, 3H, CH3), 2.47 (s,
3H, CH3), 4.15 (q, J = 7.2 Hz, 2H, CH2), 5.39 (d, J = 4 Hz, 1H, CH), 6.72 (d, J = 4Hz, 1H, CH), 7.24–8.52
(m, 19H, Ar-H); MS m/z (%) 651 (M+, 26), 484 (48), 400 (71), 252 (39), 179 (42), 105 (100), 57 (83). Anal.
Calcd. for C37H29N7O5 (651.68): C, 68.19; H, 4.49; N, 15.05. Found: C, 68.04; H, 4.33; N, 14.92%.

Ethyl 7-(4-(ethoxycarbonyl)-1,5-diphenyl-1H-pyrazol-3-yl)-1,5-diphenyl-1,5-dihydro-[1,2,4]triazolo[4,3-a]
pyrimidine-3-carboxylate (15e). Yellow solid, (72% yield), mp 180–182 ◦C (DMF/EtOH); IR (KBr) νmax

3056, 2973 (C-H), 1713, 1679 (2C=O), 1596 (C=N) cm−1; 1H NMR (DMSO-d6) δ 1.04 (t, J = 7.2 Hz, 3H,
CH3), 1.26 (t, J = 7.6 Hz, 3H, CH3), 4.14 (q, J = 7.2 Hz, 2H, CH2), 4.26 (q, J = 7.6 Hz, 2H, CH2), 5.46 (d,
J = 4 Hz, 1H, CH), 6.47 (d, J = 4Hz, 1H, CH), 6.96–7.79 (m, 20H, Ar-H); MS m/z (%) 636 (M+, 9), 394
(51), 283 (33), 235 (49), 194 (62), 83 (53), 57 (100). Anal. Calcd. for C38H32N6O4 (636.71): C, 71.68; H,
5.07; N, 13.20. Found: C, 71.62; H, 5.01; N, 13.03%.

Ethyl 7-(4-(ethoxycarbonyl)-1,5-diphenyl-1H-pyrazol-3-yl)-5-phenyl-1-(p-tolyl)-1,5-dihydro-[1,2,4]triazolo
[4,3-a]pyrimidine-3-carboxylate (15f). Yellow solid, (73% yield), mp 172–174 ◦C (EtOH); IR (KBr) νmax

3052, 2955 (C-H), 1710, 1699 (2C=O), 1595 (C=N) cm−1; 1H NMR (DMSO-d6) δ 1.02 (t, J = 7.2 Hz, 3H,
CH3), 1.23 (t, J = 7.6 Hz, 3H, CH3), 2.30 (s, 3H, CH3), 4.10 (q, J = 7.2 Hz, 2H, CH2), 4.26 (q, J = 7.6 Hz,
2H, CH2), 5.39 (d, J = 4 Hz, 1H, CH), 6.45 (d, J = 4Hz, 1H, CH), 7.12–7.76 (m, 19H, Ar-H); MS m/z (%)
650 (M+, 6), 439 (44), 361 (30), 244 (57), 104 (100), 91 (48), 43 (60). Anal. Calcd. for C39H34N6O4 (650.74):
C, 71.98; H, 5.27; N, 12.91. Found: C, 71.75; H, 5.19; N, 12.74%.

Ethyl 1-(4-chlorophenyl)-7-(4-(ethoxycarbonyl)-1,5-diphenyl-1H-pyrazol-3-yl)-5-phenyl-1,5-dihydro-[1,2,4]
triazolo[4,3-a]pyrimidine-3-carboxylate (15g). Yellow solid, (75% yield), mp 188–190 ◦C (DMF/EtOH);
IR (KBr) νmax 3037, 2966 (C-H), 1713, 1667 (2C=O), 1597 (C=N) cm−1; 1H NMR (DMSO-d6) δ 1.05 (t,
J = 7.2 Hz, 3H, CH3), 1.19 (t, J = 7.6 Hz, 3H, CH3), 4.13 (q, J = 7.2 Hz, 2H, CH2), 4.24 (q, J = 7.6 Hz, 2H,
CH2), 5.42 (d, J = 4 Hz, 1H, CH), 6.47 (d, J = 4Hz, 1H, CH), 7.25–7.79 (m, 19H, Ar-H); MS m/z (%) 673
(M+ + 2, 11), 671 (M+, 36), 387 (100), 324 (68), 278 (50), 105 (42), 78 (83). Anal. Calcd. for C38H31ClN6O4

(671.15): C, 68.00; H, 4.66; N, 12.52. Found: C, 68.25; H, 4.40; N, 12.46%.

Ethyl 7-(4-(ethoxycarbonyl)-1,5-diphenyl-1H-pyrazol-3-yl)-1-(4-nitrophenyl)-5-phenyl-1,5-dihydro-[1,2,4]
triazolo[4,3-a]pyrimidine-3-carboxylate (15h). Brown solid, (71% yield), mp 206–208 ◦C (EtOH); IR
(KBr) νmax 3030, 2948 (C-H), 1713, 1644 (2C=O), 1593 (C=N) cm−1; 1H NMR (DMSO-d6) δ 1.07 (t,
J = 7.2 Hz, 3H, CH3), 1.25 (t, J = 7.6 Hz, 3H, CH3), 4.12 (q, J = 7.2 Hz, 2H, CH2), 4.27 (q, J = 7.6 Hz, 2H,
CH2), 5.46 (d, J = 4 Hz, 1H, CH), 6.49 (d, J = 4Hz, 1H, CH), 7.25–8.42 (m, 19H, Ar-H); MS m/z (%) 681
(M+, 31), 577 (73), 390 (66), 327 (95), 115 (100), 83 (52). Anal. Calcd. for C38H31N7O6 (681.71): C, 66.95;
H, 4.58; N, 14.38. Found: C, 66.77; H, 4.42; N, 14.23%.

3.2. Cytotoxic Activity

The cytotoxic evaluation of the synthesized compounds was carried out at the Regional Center
for Mycology and Biotechnology at Al-Azhar University, Cairo, Egypt according to the reported
method [56].

4. Conclusions

Two series of functionalized pyrazolyl-pyridines were prepared by multi-component reaction of
3-acetylpyrazole derivative with the appropriate aldehyde, malononitrile (or ethyl acetoacetate) in
acetic acid in the presence of excess ammonium acetate. The mechanism of formation of the novel
products was also discussed. Additionally, two novel bipyridine derivatives were synthesized by
the above described reaction and under the same reaction conditions using terephthaldehyde in lieu
of benzaldeyde derivatives. Another series of 1,2,4-triazole[4,3-a]pyrimidines, including a pyrazole
moiety, was prepared by the reaction of a pyrazolylpyrimidine-2-thione derivative with a variety of
hydrazonoyl chlorides under reflux in dioxane in the presence of triethylamine. The assigned structure
for the products was elucidated based on elemental analyses and spectral data (IR, 1HNMR, MS).
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Moreover, the novel pyrazolyl-pyridines were tested for their reactivity as antitumor agents and the
results obtained revealed high potency of some of them against HEPG2-1 compared with doxorubicin
used as the reference drug.
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