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a b s t r a c t

Host-origin classification and signatures of influenza A viruses were investigated based on the HA protein
for tracking of the HA host of origin. Hidden Markov models (HMMs), decision trees and associative
classification for each influenza A virus subtype and its major hosts (human, avian, swine) were
generated. Features of the HA protein signatures that were host-and subtype-specific were sought. Host-
associated signatures that occurred in different subtypes of the virus were identified. Evaluation of the
classification models based on ROC curves and support and confidence ratings for the amino acid class-
association rules was performed. Host classification based on the HA subtype achieved accuracies
between 91.2% and 100% using decision trees after feature selection. Host-specific class association rules
for avian-host origins gave better support and confidence ratings, followed by human and finally swine
origin. This finding indicated the lower specificity of the swine host, perhaps pointing to its ability to mix
different strains.

& 2013 Elsevier Inc. All rights reserved.

Introduction

Influenza A viruses

Influenza is one of the most important emerging and re-
emerging infectious diseases, causing high morbidity and mortal-
ity (Allen et al., 2009). Global outbreaks of human influenza arise
from influenza A viruses with novel hemagglutinin (HA) proteins,
to which humans have no immunity (Finkelstein et al., 2007). The
influenza A viral genome is segmented into eight parts which
allows the exchange of entire genes between the different viral
strains producing new viruses (Horimoto and Kawaoka, 2005;
Triki, 1997). The HA protein is responsible for the binding of
virions to host cell receptors and for fusion between the virion
envelope and the host cell (Wiley and Skehel, 1987). The role of NA
is to free virus particles from host cell receptors, to permit progeny
virions to escape from the cell in which they arose, and so facilitate
the spread of the virus (Chander et al., 2010). There are at least 16
different HA and nine different NA influenza A subtypes (Zhang
et al., 2009) classified according to the immunological nature of
the strains.

Influenza subtyping and pattern discovery

Rapid virus subtype and evolutionary host of origin identifica-
tion is critical for accurate diagnosis of human infections, effective
response to epidemic outbreaks, and global-scale surveillance of
highly pathogenic subtypes (Garten et al., 2009). The hemagglu-
tination inhibition assay is a classical subtyping method but it
requires extensive laboratory support for reagent libraries
(Pedersen, 2008). Another way of subtyping the HA genes is by
reverse transcriptase PCR, or real-time PCR, which is highly
specific (Starick et al., 2000). Sequencing methods can also be
used for viral characterization by BLAST searches against known
viral sequences (Altschul et al., 1997); however, the BLAST results
cannot reveal host-origin, or host-related signatures which are
important mutations that may be related to the structure and
function of HA proteins. Further, the BLAST scores would not
reliably reveal the host-origin because a few mutations could
separate two hosts of the same subtype.

Discriminative pattern recognition and identification of conserved
regions for the influenza A virus proteins are important for capturing
the signatures associated with seasonal changes (ElHefnawi et al.,
2011a,b; Gendoo et al., 2008) because these changes can provide
functional insights into the roles of the influenza proteins and the
HA segment of the viral genome. In addition, antigenic drifts and
antigenic shifts have been related to pandemics occurrences;
especially to the high-infectivity 2009 H1N1 pandemic (manuscript
in press).
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Influenza host-origins and the HA protein

To elucidate the mechanism by which pandemic influenza virus
strains are generated, we must first understand the host range
restrictions at a molecular level, and the mechanisms and processes
behind such restrictions. All 16 subtypes of HA and nine subtypes of
NA are found in the avian influenza virus (Munch et al., 2001). Four
viral subtypes, H1, H2, H3 and H5 (Scholtissek et al., 1978) are known
human influenza viral strains, although, recently, the H7 subtype was
found in the Netherlands. Swine-origin influenza virus is limited to
subtypes H1N1, H1N2, H3N1, and H3N2. Influenza virus infection is
initiated by interactions between the viral HA and sialic acid (SA)-
containing carbohydrates on the surface of the target cells. Avian
influenza viruses are not readily introduced into humans (Beare and
Webster, 1991), possibly because humans do not possess the α(2,3)-
sialyllactose (NeuAc-2,3Gal) receptors required for the attachment of
the viruses to epithelial cells. However, individual viral genes can be
transmitted between human and avian species, as demonstrated by
the avian human reassortant viruses that caused the 1957 and 1968
influenza pandemics (Scholtissek et al., 1978; Kawaoka et al., 1989).
This finding suggested that an intermediate host might be needed for
the genetic reassortment of human and avian viruses. Swine are
considered likely candidates for this role because they can be infected
by either avian or human viruses (Kida et al., 1994; Schultz et al., 1991),
and because they possess both NeuAc-α2,3Gal and NeuAc-α2,6Gal
receptors (Kida et al., 1994; Rota et al., 1989; Scholtissek et al., 1983).

HA protein analysis, data mining and influenza host
of origin

The amino acid residues of HA that make up the receptor-binding
site (RBS) are highly conserved among the HAs of different subtypes of
the avian influenza virus; however the amino acids in the RBS of the
human influenza viruses display distinct variability. In particular, the
residues at positions 138, 190, 194, 225, 226, and 228 are highly
conserved in the avian RBSs, whereas in the human RBSs there are
substitutions at these positions (Matrosovich et al., 1997). In the H2
and H3 influenza virus strains, residues at positions 226 and 228 in
the HA sequence correlate with the preferential recognition of the SA-
Gal (referred to above as NeuAc-Gal) linkage by HA and the host
species from which the virus was isolated. HAs with Leu at position
226 (Leu-226) and Ser-228 (human viruses) preferentially recognize
SA-α2,6Gal, whereas those with Gln-226 and Gly-228 (avian and
equine viruses) recognize SA-α2,3Gal (Connor et al., 1994). Highly
pathogenic avian influenza H5N1 virus strains can transmit directly
from avian species to humans and a cause severe form of the disease.
The change of one amino acid in the RBS of the H5 HA protein could
be sufficient to change the receptor-binding specificity of H5N1
viruses, easily overcoming barriers between interspecies transmission
(Wong and Yuen, 2006). This process will be elaborated upon in the
Discussion section.

Previously, we used hidden Markov models for subtyping of
influenza a virus using the Hemagglutanine protein with 100%
accuracy, and for host of origin classification with accuracies ranging
between 50–90% (Fayroz et al., 2012). An integrated approach, using
both decision trees (DTs) and profile hidden Markov models (HMMs)
for the subtype prediction of human influenza A virus was presented
by Attaluri et al. (2009a) and was reported to have achieved a subtype
prediction accuracy of 88% for the human subtypes. In another study,
these workers applied two machine learning techniques (DTs and
support vector machines) to identify and discriminate the origin of
the pandemic (H1N1) 2009 viral strains with 95% accuracy and
concluded that the H1N1 strain was of swine origin (Attaluri et al.,
2009b). In their most recent study, Attaluri et al. (2010) applied a feed-
forward backpropagation neural network to predict important influ-
enza virus antigenic types and hosts and found that the highest

accuracy was achieved when using HAs and NAs for human host
classification.

Large-scale sequence analyses have revealed ‘signature’ amino
acids at specific positions in the viral proteins that distinguish
human influenza viruses from avian influenza viruses (Finkelstein
et al., 2007; Chen et al., 2006). These host lineage-specific amino
acids were found mainly in the components of the viral RNA
polymerase complex, such as the PB2 and PA polymerases and the
nucleocapsid protein, that is essential for viral genome replication
(Deng et al., 2006; Klumpp et al., 1997). It is likely that these amino
acids contribute to the host-range restriction of influenza viruses
(Gabriel et al., 2005; Scholtissek et al., 1985); although, with the
exception of the amino acids at positions 627 and 701 of PB2
whose importance in virulence has been demonstrated in a rodent
model (Shinya et al., 2004; Steel et al., 2009), their biological
significance remains to be established. In another study of the
pandemic (H1N1) 2009 virus, the human–swine signatures and
amino acid sequences at the host species-specific positions of the
proteins were analyzed to elucidate the adaptive mutation of the
strain in these host species (Chen and Shih, 2009). Signatures that
distinguish swine viruses from human viruses were also present.

Aim of the present work

The aim of the present study was to identify molecular
signatures and establish accurate host of origin classifiers for the
influenza HA protein. A profile HMM-subtype classification for the
influenza A virus was performed. Then, HMM and DT classification
models were used for host-origin classification of a particular
subtype. Host-origin classification independent of subtype was
conducted next. Finally, host-origin signatures and classification
rules were inferred for the three major hosts (human, avian, and
swine). Here, we generalized and extended on previous studies
that analyzed one subtype or host, to include all influenza A viral
subtypes and major host origins using better classification models.
We also identified host-specific genomic signatures in the HA
proteins for human vs. swine vs. avian origin influenza viruses.
Amino acid residues that were specific to either human, swine or
avian influenza viruses were selected as potential host-associated
signatures. Class association rules were generated for the sites
with statistically significant variations between different hosts in
both the comparative sequence logo and the viral epidemiology
signature pattern analysis (VESPA) as detailed in the Methods
section and flow chart (Fig. 1). We subsequently validated the
robustness of the candidate signatures against human, avian and

Fig. 1. Protocol used to extract host-origin classification signatures for the
influenza A virus subtypes. The classification methods incorporated amino acid
signatures into class-association rules for the HA protein for human vs. avian vs.
swine influenza A viruses.
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swine sequences downloaded from the National Center for Bio-
technology Information (NCBI) Influenza Virus Resource database.
Using DTs, we found that these signature classifiers achieved host-
origin prediction accuracies based on HA subtypes between 91.2%
and 100%. Thus, analysis of a near-complete collection of species-
specific influenza A viral sequences comprising the long-evolving
avian, and recent ancestral swine and human viruses, as well as
the pandemic (H1N1) 2009 viruses was performed, and host-
specific signatures and class-association rules were generated that
would help in tracking and understanding of the influenza virus.

Results

Subtyping and hidden Markov models and decision trees host of
origin classification

Multiple sequence alignments were carried out separately for
16 HA subtypes and nine NA subtypes using the ClustalX program.
Then, using the HMMER suite for each group, profile HMM models
were built and calibrated to produce a database for each group as
previously performed (Sherif et al., 2012). The accuracies of the
classification results using the HMMs was 100% for all the HA and
NA subtypes. The same method was then used for subtype
classification of the host of origin.

For each host-specific group, sequences belonging to each HA
subtype were aligned using the ClustalW program. Each of the 12
groups of data (H1 – human, H1 – avian, H1 – swine, H2 – human, H2
– avian, and so on) were aligned and analyzed. Host classification was
done by applying the two comparative techniques (profile HMM and
DTs) to identify the origin of the viral strains. The pre-identified HA
subtype has scored with the corresponding ‘HA-host’ HMM models

for better matching. The host classification using the profile HMMs
had accuracies between 53% and 100% (Table 2).

Host-specific signatures of the human, swine, and avian viruses
were extracted using VESPAwith a minimum threshold of 90%. A total
of 23, 22, 12, 7 and 8most informative amino acid positions were used
to collectively identify the different H1, H2, H3, H5 and H9 hosts
respectively. Comparative sequence logos were used to graphically
represent the most informative positions for each of the HA subtypes
for the different hosts (Fig. 2 and Additional file 1 in Appendix A). To
identify more precisely the host of origin of the viruses, these
important positions were used to generate DTs for the H1, H2, H3,
H5, and H9 HAs (Fig. 3 and Additional file 2 in Appendix A). The DT
models had accuracies between 91.2% and 100% (Table 2), outperform-
ing the profile HMM models. The performance of the DTs was
comparable to the performance of DTs reported in previous studies,
as elaborated upon in the Discussion section.

General host of origin signatures identification (non-subtype-specific)

A multiple sequence alignment of all 1500 HA protein
sequences from the three hosts was performed and then the
alignment was separated into three sets of alignments (human,
avian and swine) for comparison. Two groups of sequences (one
from each of two sets) were compared, generating six different
comparisons between the hosts: human vs. avian, human vs.
swine, avian vs. swine, and their permutations (Fig. 4 and Addi-
tional file 4 in Appendix A). Positional variations in the HA
sequences between different hosts were compared using VESPA
and comparative sequence logos (Fig. 4) (see Methods section for
details). The most informative positions are those that were
relatively variable in one group compared with the other and

Fig. 2. Representative comparative sequence logos for subtype-specific HA signatures in different hosts. Comparative sequence logos representing the most informative
positions for the H2, H5 and H9 HA proteins from different hosts are shown. (A) H2-avian sequences were set as the negative sample and H2-human sequences were set as
the positive sample. (B) H5-avian sequences were set as the negative sample and H2-human sequences were set as the positive sample. (C) H9-avian sequences were set as
the negative sample and H9-swine sequences were set as the positive sample. The letters in the middle bar represent conserved positions. The empty positions represent
variations within each group but no significant variations between the two groups.
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their relative frequencies [see the tables in Additional file 4 in
Appendix A for details]. Informative class association rules with a
certain threshold of support and confidence ratings were gener-
ated using the VESPA and comparative sequence logos results
(Tables 3 and 4). The complete set of rules with their support and
confidence ratings is available in additional tables [see Additional
file 4 in Appendix A]. The most accurate sets of class association
rules extracted from the most informative positions are shown in
Table 3 and the top-ranked rules are listed in Table 4. The amino
acid positions shown in Table 3 refer to the H1N1 reference
sequence [GenBank:NP_040980].

A total of 9, 31, 11, 6, 22, and 31 most informative amino acid
positions among the 630 aligned residues in the HAs, revealed

significant differences between the avian vs. human, human vs.
avian, human vs. swine, swine vs. human, avian vs. swine, and
swine vs. avian HAs respectively (Table 3 and the tables in
Additional file 4 in Appendix A). Two signature residues at
positions 291 (K in human, N in avian, D in swine) and 408 (H
in human, E in avian, and T in swine) of the HAs (highlighted in
yellow in Table 3) exhibited dominant changes between the three
hosts with strong support in the avian and moderate support in
the human and swine viruses. Positions 244 (M–I) and 312 (I–V)
(356) (highlighted in green in Table 3) were both informative for
finding signatures for human vs. avian and human vs. swine. These
two positions could separate the HAs into two classes (human and
avian/swine) with support ratings of 82.8% and 82.4% respectively.

Fig. 3. DT classifier to classify H5 influenza A virus host of origin as human or avian. The DT for the H5 HA that was used to predict the H5 host of origin as human (H) or
avian (A). The numbers in brackets indicate.

Fig. 4. Comparative sequence logos for HA host signatures across different subtypes. Logos for human vs. avian, human vs. swine, avian vs. swine and vice versa are shown.
The letters in the middle bar represent conserved positions. The empty positions represent variations within each group but no significant variations between the two
groups. The variable positions in the different hosts that were also found by VESPA are shown [see the tables in Additional file 4 in Appendix A for details].
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Fig. 5. Comparative ROC curves between the HMMs and DTs for host identification of different HA subtypes. The ROC curves for (A) H1 – human, (B) H1 – swine,
(C) H1 – avian, (D) H3 – human, (E) H3 – swine, and (F) H3 – avian models are shown.

Fig. 6. Features of the HA protein mapped to the H1N1 reference sequence [GenBank:NP_040980]. The positions of the HA subdomains, post-modification sites,
transmembrane region, and receptor-binding sites are indicated. Specific strain and host-associated positions are shown in the accompanying table.
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Positions 266 (I–V)), 267 (A–V), and 526 (G–R) (highlighted in blue
in Table 3) were informative for finding signatures for both swine
vs. human and swine vs. avian. These positions could separate the
HAs into two classes (swine and avian/human) but their support
rating was about 55.5%. This poor result is plausible because the
swine host is a known reservoir for both the avian and human
strains. Notably, except for the few positions mentioned above,
none of the positions listed in Table 3 could simultaneously
differentiate between the three host classes.

The avian signature showed the largest number of informative
positions (the 21 non-highlighted positions in Table 3). These
positions were informative for finding signatures for both human
vs. avian and swine vs. avian and separated the hosts into two
classes (human/swine and avian) with support ratings between
59% and 99.3% (Table 3).

Some of the positional markers that produced the most
informative rules with the highest support and confidence ratings
(Table 4) could not distinguish between the functional classes by
themselves; however, when combined with other markers they
improved the class predictions. These findings demonstrate the
importance of the informative residues for receptor specificity and
for host range restriction of the virus.

The support and confidence ratings are measures of a rule's
interestingness and reflect the usefulness and certainty, respec-
tively, of the postulated rules. For example, we found a support
rating of 90% for an association rule at position 408 (H in human, E
in avian, and T in swine), indicating that in 90% of the sequences
analyzed “E” and “avian” occurred together. A confidence rating of
79.8% indicates that 79.8% of the sequences that contain the
residue “E” at position 408 were found in avian. Typically,
association rules are considered interesting if they satisfy both a
minimum support threshold and a minimum confidence thresh-
old. These thresholds can be set by users or domain experts.

Model evaluation: ROC curves

The classification models were evaluated using ROC curves
which chart the number of true positives vs. the number of false
positives. The ROC curves were generated using the MedCalc
program. True positives are homologous pairs and false positives
are non-homologous pairs with scores above a certain threshold.
By varying the threshold score, the curve of true positives vs. false
positives can be traced (Nomura, 1979). We used comparative ROC
curves to test the statistical significance of the difference between
the areas under two or more ROC curves. The ROC curves for
comparisons between HMMs and DTs for host identification of
the different HA subtypes are shown in Fig. 5 and Additional file
3 in Appendix A. The curves indicate the superiority of the DT
models.

A diagram of the HA reference protein from H1N1 indicating
some of its important features such as subdomains, motifs,
receptor binding sites, and post-translational modifications, is
shown in Fig. 6. Mapping the markers to the annotated HA
reference sequence may reveal their host restriction roles.

Discussion

Recent large-scale sequence analyses revealed ‘signature’
amino acids at specific positions in viral proteins that distinguish
human influenza viruses from avian or swine viruses. Therefore, it
is likely that, because of immune pressure and the receptor
specificity of the HA receptor binding site, there are markers in
the HA glycoprotein on the surface of the host cells.

Subtype classification

Our results confirm that protein profile HMMs can be used
successfully to subtype influenza A strains hosted in all three
species. The HA and NA subtypes were identified with 100%
accuracy and the 16 HA and nine NA models all had a sensitivity
of 100% and specificity of 100% as previously performed (Sherif
et al., 2012). Our results achieved a higher accuracy than the
accuracy reported by Attaluri et al. (2010) in a previous study. In
their study, the accuracy for subtype classification was over 91%
when the frequencies of k-mer nucleotide strings were used as
input to a neural network and a higher value of k was reported to
achieve relatively better classification results. In the present study,
we used protein sequences rather than nucleotide sequences
because protein sequences tend to be more discriminative as
reflected in the higher accuracy levels that we achieved.

Subtype-specific host-origin classification

Host classification of any viral sequence depends on the HA
subtype. Some of the HA subtypes that can infect more than one
species vary greatly between the human, swine, and avian viruses,
while others varied so little that it was difficult to identify their host of
origin.

Here, because of its particular importance, we focused on the HA
protein and compared the results of the HMM and DT analyses to
classify the influenza host. For the HMM models, the detailed results
are also discussed elsewhere (Altschul et al., 1997; Fayroz et al., 2012).

Interestingly, we found that using DTs improved the accuracy of
the influenza host classification by identifying the most informa-
tive positions that differentiate different hosts within the same HA
subtype. For the major HA subtypes, DTs achieved a higher
accuracy in host classification than the HMMs for the same HA
subtype. For example, the DT for the H5 HA that was built to
identify the H5 host of origin (human or avian), predicted the H5-
human and H5-avian models with accuracies of 91.3% and 91.2%
respectively, much higher than the accuracies for the equivalent
HMM models. The DT analysis focuses on some specific discrimi-
native positions, making it is possible to identify accurately the
host of origin. In contrast, profile HMMs often model complete
protein sequences and then search the query sequence for global
matching using this model. Thus, despite the genetic similarities
that exist in the human, swine, and avian viruses for the same HA
subtype, we were able to successfully identify specific signatures
using our combined approach.

Similarly, Attaluri et al. (2009a, 2010) found that the accuracy
of virus classification varies from host to host and from gene
segment to gene segment and the highest host classification
accuracies were achieved for the HA and NA genes. In the present
study and in the Attaluri et al. studies, compared with avian and
swine hosts, the human host was predicted with the highest
accuracy, no matter which method was used.

General host-origin specific signatures

Here, we proposed a computational approach that is capable of
indicating species-associated signatures in human, avian, and
swine influenza viral genomes. Because of the important func-
tional role of HA in cell-receptor attachment, entry, and infectivity,
our focus in this study was specifically on the persistent host-
origin conserved markers and host markers that were found only
in the surface HA glycoproteins. Variations in the HA protein are
caused by immune pressures, and host restrictions occur because
of the receptor specificity of the HA receptor binding sites. Never-
theless, our results could still be applied to study evolutionary
processes in different hosts and to investigate host adaptation.
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These class association rules which are position- and amino
acid-specific, proved to be more appropriate for host identifica-
tion than the profile HMMs that we reported previously (Fayroz
et al., 2012). Some of the rules gave support and confidence
ratings that were high enough either to separate between the
three hosts or to separate one of the hosts from the other two
(Table 3). The amino acids at positions 185 (K–T), 238 (R–N), 266
(I–V), 383 (K–E), 408 (T–E) and 547 (L–V) gave the best support
and confidence ratings for influenza HA protein host discrimina-
tion. Thus, the class association rules that were extracted from
the VESPA results and confirmed by comparative sequence logos
can be used to increase the sensitivity and specificity of genetic
biomarker discovery in general (ElHefnawi et al., 2010). Com-
parative sequence logos confirm our signature analysis for every
pair of host groups because almost all the positional markers
coincided with the comparative sequence logo and signature
pattern analysis [see the tables in Additional file 4 in Appendix
A]. However, the comparative logos detected some additional
signature positions, such as positions 433 I–L (488) and 435 I–V
(490), which were statistically significant in the avian vs. human
signature.

Previous studies have also defined host specificity markers.
For example, Allen et al. (2009) predicted positions in the
genome associated with human host specificity. However, the
host markers that these workers identified in the surface glyco-
proteins HA and NA and in the polymerase protein PB1, as well as
the alternate transcripts NS2, M2, and PB1-F2, were poor-quality
host discriminators. Chen et al. (2006) looked for human markers
beyond the pandemic conserved regions. However, their
approach of identifying species-associated signatures by entropy
are less useful for the HA and NA genes because the genetic
diversity that exists in these two gene segments in human or
avian viruses can boost their respective entropy to more negative
values, making it difficult to find residues that were conserved
sufficiently to identify such signatures (Chen et al., 2006).
Similarly, using genetic distance or phylogenic analysis for
host-origin discrimination may not be applicable because
the different hosts would not cluster appropriately. Some
phylogenetic trees that clustered HA subtypes but not hosts of
origins are available in an additional file [see Additional file 6 in
Appendix A].

For the inaccurately classified swine host HA sequences H1N1,
H1N2, H3N1, and H3N2, the classification errors appeared to
be due to recent reassortment events, suggesting that some
influenza genomes are a mix of both human and avian strains
(Sherif et al., 2011). Matrosovich et al. (1997) reported six amino
positions (138, 190, 194, 225, 226, and 228) that distinguish
human and avian influenza viral sequences. In a virus isolated
from a fatal human influenza case, Auewarakul et al. (2007)
showed that substitutions at positions L129V and A134V in the
HA protein could change the receptor-binding preference of the
HA of the H5N1 virus from SA-2,3Gal to both SA-2,3Gal and SA-
2,6Gal. Likewise, Wu et al. (2008) identified four discriminative
amino acid positions (54, 55, 241 and 281) in the HA protein
sequences within H5N1 using a DT. None of these positions were
identified in the non-specific host-origin subtype signatures
mainly because, for general host-origin signature identification,
we pooled all the HA subtypes into one “host” class which would
have substantially altered the reported set of persistent markers
for a specific subtype.

Our study could also have a number of limitations. In addition
to the data limitations, accurate HA sequence alignments are
difficult to generate because of the high sequence variability in
the HA proteins, and this is despite the care taken in manual
editing. Thus, false-negative errors may occur as the result of
alignment errors.

Conclusion

Accurate detection of the viral origin of influenza can
significantly improve influenza surveillance and vaccine devel-
opment. Here, subtyping and host identification of influenza
A virus was performed based on profile HMMs for the HA and
NA subtypes and DTs for the major host of origin. Critical amino
acid positions and identities inside the HA proteins were
identified to act as host-specific signatures. HA host-origin
comparisons revealed host-specific sites and amino acids that
could help in modeling the evolution of the influenza A HA
protein through different hosts and in understanding its speci-
ficity. Informative class association rules with a certain mini-
mum threshold of support and confidence were generated to
improve host-origin determination.

Hence, the power of extracting conserved and discriminative
positions from integrating the multiple sequence alignments, and
DTs approaches in classifying influenza A viral strains and their
host of origin was demonstrated. We found that the subtyping of
the HA and NA proteins using profile HMMs was an accurate and
easy to apply method. When the DT and HMM approaches for
host-origin classification was compared, we found that the DT
method was superior.

Finally, to extract the most important motifs, discriminative
pattern analysis on a very wide range of complete HA sequences
was performed. The host markers that were identified were
confirmed and validated using human, avian, and swine test data
sets. The host-specific class association rules that we built gave
higher support and confidence ratings for avian compared with for
human or swine. The protein sequences from the different hosts
were numbered based on the H1N1 influenza A virus Puerto Rico
strain HA protein [GenBank:NP_040980.1] which was used as the
reference sequence. Some of the highest host-origin class associa-
tion rules were located at amino acid positions 238 (N–R), 383 (K–E)
and 266 (I–V) in the avian, human and swine HAs respectively.
Also, two HA signatures, one at position 291 (K in human, N in
avian, D in swine) and another at position 408 (H in human, E in
avian, T in swine), exhibited dominant changes in the three hosts,
suggesting that these signatures may be useful as host-specific
markers as described in the Results section and in Tables 3 and 4.
Thus, the residues at these positions are potential markers for the
prediction of influenza host origin.

Methods

The workflow (Fig. 1) that we followed to classify the
influenza A viral subtypes and hosts origins and their asso-
ciated signatures consists of sequence collection and sorting,
and multiple sequence alignments. This was followed by the
training and testing of profile HMM influenza subtype models.
The profile HMMs were then used for host-origin classification.
For host-origin classification using DTs, informative site identi-
fication and feature selection was performed using comparative
sequence logos (for quick identification of positions that are
statistically different) and VESPA (for positional enumeration of
amino acids variations between two hosts) after global multiple
sequence alignments for each HA protein host group were
generated. For host identification, comparisons between the
HMMs and DTs for the multi-host of origin subtypes H1, H2, H3,
H5 and H9 were conducted.

To find host-origin signatures or markers in the HA proteins,
we used informative site identification and feature selection for
the positional enumeration of amino acids in each host group
regardless of HA subtype. Then, class association rules were
generated and the best set of rules was selected.
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Sequence collection and data analysis

Viral protein sequences were downloaded from the NCBI
Influenza Virus Resource (Bao et al., 2008), including sequences
from laboratory-adapted viruses and pandemic (H1N1) 2009
sequences from within the human host. Of the downloaded
sequences, only non-redundant HA and NA segments were
selected, giving a total of 3850 and 1220 HA and NA protein
sequences respectively. Non-redundant HA and NA segments for
each HA and NA subtype were selected to ensure that the different
subtypes and host origins within each subtype were represented.
Random uniform sampling was carried out for sequences from
within each subtype and from each of the three host species
(human, avian and swine). The sequences were grouped according
to subtype or host, and covered all the viral subtypes found in that
host. The sequences were downloaded in FASTA format (including
accession number, subtype, gene, host, occurring year, and other
parameters) and were parsed into each category. We used the
amino acid sequences (20 letter alphabet) because they are known
to give more reliable results than nucleotide sequences (4 letters
alphabet), whose divergence is high (Suzuki and Nei, 2002).

In this study, along with the five most important subtypes, H1,
H2, H3, H5 and H9, we also chose three host groups, human, avian,
and swine, because birds appear to be the reservoir of the
influenza A virus and swine act as an intermediary between avian
and human viruses. The HA segment alone was used for host
classification modeling and signature identification; part of the
data was used for training and the remaining part was used for
testing (Table 1).

To compare the genomic patterns of the avian, swine and
human influenza viruses, we downloaded 1500 HA protein
sequences that had been isolated from the three host species
(500 for each host, applying random uniform sampling) from the
NCBI Influenza Virus Resource. The signatures that we obtained by
analyzing the primary dataset were validated and tested using
human, avian, or swine test sets. The signatures and positions in
the sequences from the different hosts were numbered in accor-
dance with the H1N1 influenza A virus Puerto Rico strain HA
reference protein [GenBank:NP_040980.1]. The training sets from
each group (Table 1) were aligned using ClustalW 2.0.

Pattern discovery and feature selection

The VESPA program (available from http://www.hcv.lanl.gov)
can be used to quickly detect amino acids that characterize

Table 1
List of influenza A virus sequences used in this study. The count of sequences used
for each of the HA and NA subtypes is shown. The total number of each subtype,
and the number in each group based on the host are listed. For example, ‘H1 –

human’ is the number of H1 viral sequences isolated from human. The number of
sequences in the training and test sets used for building and testing the HMMs are
indicated.

HA segment Group # Of training sequences # Of test sequences

H1 Total H1 1154 178
H1 – human 749 100
H1 – avian 105 10
H1 – swine 300 68

H2 Total H2 174 43
H2 – human 50 13
H2 – avian 124 30

H3 Total H3 913 128
H3 – human 550 69
H3 – avian 263 30
H3 – swine 100 29

H4 Total (avian) 200 64
H5 Total H5 1310 217

H5 – human 110 33
H5 – avian 1200 184

H6 Total (avian) 150 40
H7 Total (avian) 200 64
H8 Total (avian 15 4
H9 Total H9 413 44

H9 – avian 400 42
H9 – swine 13 2

H10 Total (avian) 40 7
H11 Total (avian) 40 11
H12 Total (avian) 15 4
H13 Total (avian) 25 5
H14 Total (avian) 10 2
H15 Total (avian) 10 2
H16 Total (avian) 12 4

NA segment
N1 Total N1 1530 146

N1 – human 600 56
N1 – avian 830 70
N1 – swine 100 20

N2 Total N2 1652 264
N2 – human 761 100
N2 – avian 700 124
N2 – swine 191 40

N3 Total N3 102 40
N4 Total N4 40 10
N5 Total N5 65 20
N6 Total N1 261 15
N7 Total N7 100 20
N8 Total N8 300 30
N9 Total N9 80 20

Table 2
Summary of host classification results for influenza A virus using HMMs and DTs.

HA subtype Host Using HMM Using DT

Accuracy (%) Sensitivity (%) Specificity (%) Accuracy (%) Sensitivity (%) Specificity (%)

H1 Human 94.4 93.7 95.7 91.3 92.9 95.5
Avian 89.5 100 95.3 94.6 90 99
Swine 84.5 90.3 82.9 92 91.1 92.5

H2 Human 100 94.1 100 100 100 100
Avian 90 91.7 87.5 100 100 100

H3 Human 80.8 86.9 71.1 94.3 94 98
Avian 90.9 82.4 92.7 93 95 97.5
Swine 78.7 71.4 78.8 94 94 96

H5 Human 53 95.8 39.5 91.3 95 87.5
Avian 55 44.7 87.5 91.2 87.5 95

H9 Avian 55 46.7 80 100 100 100
Swine 90 80 93.3 100 100 100
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differences between two groups of sequences. It enumerates a set
of amino acids that are conserved in one group, and differ in
another group (Korber and Myers, 1992). VESPA will pick out the
differentiated amino acids and calculate their frequencies in each
set. The sequences should all be of the same length (the total
length of the aligned protein sequences was 630 amino acids), and
the threshold should be adjusted for the minimum degree of
conservation of signature amino acids in the query set.

Two Sample Logo is a tool that can be used to calculate the
statistical significance of the relative position-specific symbol
frequencies between two sets of aligned sequences (Vacic and
Radivojac, 2006). We used it to generate host-origin graphical
logos that are subtype specific (Fig. 2 and Additional file 1), and
non-subtype specific (Fig. 4 and Additional file 4). These graphical
logos have been used previously to discriminate between different
classes of sequences such as viral sequences from responders to
treatment vs. non-responders (ElHefnawi et al., 2010).

Subtyping and host-typing classifier models

The first classifier models that we implemented using the
HMMER package version 2.3.2 were the profile HMMs for subtyp-
ing and host-typing (Eddy, 1998). Profile HMMs are statistical

models of multiple sequence alignments that can be used for
protein homology detection (Schuster-Bockler and Bateman, 2007;
Eddy, 1998). They capture position-specific information about each

Table 3
Host-origin class association positional signatures in HA and their support and confidence ratings. Positional signatures for human vs. avian vs. swine are shown.

Positio
na

Referen
ce 
position
b

Human Avian Swine
Substituti
on

Suppo
rt

Confiden
ce

Substituti
on

Suppo
rt

Confiden
ce

Substituti
on

Suppo
rt

Confiden
ce

Table 4
Top-ranked host-origin class association rules extracted from the most informative
positions (markers). The most informative rules with the highest support and
confidence ratings are listed.

Positiona Reference
positionb

Rule Support rating
(%)

Confidence rating
(%)

438K 383K K-
Human

82.8 92.9

258N 238R N-
Avian

90.7 79.5

463E 408T E-Avian 90 79.8
205T 185K T-Avian 85.2 80.2
603L 547L V-Avian 55.5 79.3
286V 266I V-

Swine
51.4 98

a Position in the sequence downloaded from the National Center for Biotech-
nology Information (NCBI) Influenza Virus Resource database.

b Position in the H1N1 influenza A virus Puerto Rico strain HA reference protein
[GenBank:NP_040980.1].
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column of the multiple sequence alignment. This makes the
HMMs more sensitive for remote homology database searches
than those based on pairwise alignments. HMMER is the engine
that is used in other databases, including TIGRFAM (Haft et al.,
2003) and SMART (; Schultz et al., 2000).

Profile HMM models were first built for each subtype; followed
by models for each major host in each subtype. Next, multiple
alignments for each host, irrespective of subtype, were carried out
and models for each host, irrespective of subtype, were used to
find signatures as described above. Database searches to score a
sequence against the model followed. Model building involved
converting the multiple alignment of each group of sequences into
a probabilistic model, while database searches involved scoring a
sequence to the profile HMM (Eddy, 1998).

A DT model and associative classification were also used to
classify host origins. These are standard data mining techniques
that have been used for a wide range of applications in classifica-
tion problems (C4.5). DT algorithms such as C4.5, CART and
regression trees can also be used to classify and identify important
features for classification. A DT is a supervised approach to
classification. Each node in a DT represents a feature in the
instance to be classified, and each branch represents a value that
the node can assume (Murthy, 1998). The WEKA classifier package
was used to implement this classifier. The package is a collection of
machine learning algorithms for data mining tasks such as DT
classification (Gewehr et al., 2007). The most informative positions
(found from both the VESPA and comparative logo analyses) that
differed between the human, swine and avian influenza viruses
were used as features (attribute) for DT generation. The DTs were
generated using the C4.5 algorithm as implemented in the WEKA
3.7.5 program known as J48. Five separate DTs for the HA proteins
from H1, H2, H3, H5 and H9 were generated, to identify more
precisely the host of origin for each subtype. The remaining HA
subtypes were found in avian hosts only, so identifying their
subtypes was enough and here was no need for further host
classification.

The third classifier, associative classification, is easy to imple-
ment and interpret. Class association rules were generated for the
sites with statistically significant variations between the host
groups in both the VESPA and the comparative sequence logo
analysis; only sites whose support and confidence ratings were
above 40% were retained.

Evaluation of classification models

Evaluation of the different classification models was performed
using a 10-fold cross validation for the DT models in the WEKA
tool. Specificity, sensitivity, accuracy, and area under the curve for
the receiver operating characteristic (ROC) analysis were calcu-
lated using the MedCalc program (Nomura, 1979). For the HMM
models, testing on the 25% test set was performed. While for the
associative classification, calculating the support and confidence
ratings for the class-association rules and selection of top-ranked
rules were conducted.
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